Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Statistics

Practice

StatisticsPractice

6.1 The Standard Normal Distribution

1.

A bottle of water contains 12.05 fluid ounces with a standard deviation of 0.01 ounces. Define the random variable X in words. X = ____________.

2.

A normal distribution has a mean of 61 and a standard deviation of 15. What is the median?

3.

X ~ N(1, 2)

σ = _______

4.

A company manufactures rubber balls. The mean diameter of a ball is 12 cm with a standard deviation of 0.2 cm. Define the random variable X in words. X = ______________.

5.

X ~ N(–4, 1)

What is the median?

6.

X ~ N(3, 5)

σ = _______

7.

X ~ N(–2, 1)

μ = _______

8.

What does a z-score measure?

9.

What does standardizing a normal distribution do to the mean?

10.

Is X ~ N(0, 1) a standardized normal distribution? Why or why not?

11.

What is the z-score of x = 12, if it is two standard deviations to the right of the mean?

12.

What is the z-score of x = 9, if it is 1.5 standard deviations to the left of the mean?

13.

What is the z-score of x = –2, if it is 2.78 standard deviations to the right of the mean?

14.

What is the z-score of x = 7, if it is 0.133 standard deviations to the left of the mean?

15.

Suppose X ~ N(2, 6). What value of x has a z-score of three?

16.

Suppose X ~ N(8, 1). What value of x has a z-score of –2.25?

17.

Suppose X ~ N(9, 5). What value of x has a z-score of –0.5?

18.

Suppose X ~ N(2, 3). What value of x has a z-score of –0.67?

19.

Suppose X ~ N(4, 2). What value of x is 1.5 standard deviations to the left of the mean?

20.

Suppose X ~ N(4, 2). What value of x is two standard deviations to the right of the mean?

21.

Suppose X ~ N(8, 9). What value of x is 0.67 standard deviations to the left of the mean?

22.

Suppose X ~ N(–1, 2). What is the z-score of x = 2?

23.

Suppose X ~ N(12, 6). What is the z-score of x = 2?

24.

Suppose X ~ N(9, 3). What is the z-score of x = 9?

25.

Suppose a normal distribution has a mean of six and a standard deviation of 1.5. What is the z-score of x = 5.5?

26.

In a normal distribution, x = 5 and z = –1.25. This tells you that x = 5 is ____ standard deviations to the ____ (right or left) of the mean.

27.

In a normal distribution, x = 3 and z = 0.67. This tells you that x = 3 is ____ standard deviations to the ____ (right or left) of the mean.

28.

In a normal distribution, x = –2 and z = 6. This tells you that x = –2 is ____ standard deviations to the ____ (right or left) of the mean.

29.

In a normal distribution, x = –5 and z = –3.14. This tells you that x = –5 is ____ standard deviations to the ____ (right or left) of the mean.

30.

In a normal distribution, x = 6 and z = –1.7. This tells you that x = 6 is ____ standard deviations to the ____ (right or left) of the mean.

31.

About what percent of x values from a normal distribution lie within one standard deviation, left and right, of the mean of that distribution?

32.

About what percent of the x values from a normal distribution lie within two standard deviations, left and right, of the mean of that distribution?

33.

About what percent of x values lie between the second and third standard deviations, both sides?

34.

Suppose X ~ N(15, 3). Between what x values does 68.27 percent of the data lie? The range of x values is centered at the mean of the distribution (i.e., 15).

35.

Suppose X ~ N(–3, 1). Between what x values does 95.45 percent of the data lie? The range of x values is centered at the mean of the distribution (i.e., –3).

36.

Suppose X ~ N(–3, 1). Between what x values does 34.14 percent of the data lie?

37.

About what percent of x values lie between the mean and three standard deviations?

38.

About what percent of x values lie between the mean and one standard deviation?

39.

About what percent of x values lie between the first and second standard deviations from the mean, both sides?

40.

About what percent of x values lie between the first and third standard deviations, both sides?

Use the following information to answer the next two exercises: The life of Sunshine CD players is normally distributed with mean of 4.1 years and a standard deviation of 1.3 years. A CD player is guaranteed for three years. We are interested in the length of time a CD player lasts.

41.

Define the random variable X in words. X = _______________.

42.

X ~ _____(_____, _____)

6.2 Using the Normal Distribution

43.

How would you represent the area to the left of one in a probability statement?

A graph showing a bell shaped curve of normal distribution with a vertical line to the right of center labeled with a 3. The axes are unlabeled.
Figure 6.12
44.

What is the area to the right of one?

A graph showing a bell shaped curve of normal distribution with a vertical line to the right of center labeled with a 3. The axes are unlabeled.
Figure 6.13
45.

Is P(x < 1) equal to P(x ≤ 1)? Why or why not?

46.

How would you represent the area to the left of three in a probability statement?

A graph showing a bell shaped curve of normal distribution with a vertical line to the right of center labeled with a 3. The axes are unlabeled.
Figure 6.14
47.

What is the area to the right of three?

A graph showing a bell shaped curve of normal distribution with a vertical line to the right of center labeled with a 3. The axes are unlabeled.
Figure 6.15
48.

If the area to the left of x in a normal distribution is 0.123, what is the area to the right of x?

49.

If the area to the right of x in a normal distribution is 0.543, what is the area to the left of x?

Use the following information to answer the next four exercises:

X ~ N(54, 8)

50.

Find the probability that x > 56.

51.

Find the probability that x < 30.

52.

Find the 80th percentile.

53.

Find the 60th percentile.

54.

X ~ N(6, 2)

Find the probability that x is between three and nine.

55.

X ~ N(–3, 4)

Find the probability that x is between one and four.

56.

X ~ N(4, 5)

Find the maximum of x in the bottom quartile.

57.

Use the following information to answer the next three exercises: The life of Sunshine CD players is normally distributed with a mean of 4.1 years and a standard deviation of 1.3 years. A CD player is guaranteed for three years. We are interested in the length of time a CD player lasts. Find the probability that a CD player will break down during the guarantee period.

  1. Sketch the situation. Label and scale the axes. Shade the region corresponding to the probability.
    Empty normal distribution curve.
    Figure 6.16
  2. P(0 < x < ____________) = ___________. Use zero for the minimum value of x.
58.

Find the probability that a CD player will last between 2.8 and 6 years.

  1. Sketch the situation. Label and scale the axes. Shade the region corresponding to the probability.
    Empty normal distribution curve.
    Figure 6.17
  2. P(__________ < x < __________) = __________
59.

Find the 70th percentile of the distribution for the time a CD player lasts.

  1. Sketch the situation. Label and scale the axes. Shade the region corresponding to the lower 70 percent.
    Empty normal distribution curve.
    Figure 6.18
  2. P(x < k) = __________. Therefore, k = _________.
Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute Texas Education Agency (TEA). The original material is available at: https://www.texasgateway.org/book/tea-statistics . Changes were made to the original material, including updates to art, structure, and other content updates.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/statistics/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/statistics/pages/1-introduction
Citation information

© Apr 16, 2024 Texas Education Agency (TEA). The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.