- Use the z-score formula. z = –0.5141. The height of 77 inches is 0.5141 standard deviations below the mean. An NBA player whose height is 77 inches is shorter than average.
- Use the z-score formula. z = 1.5424. The height 85 inches is 1.5424 standard deviations above the mean. An NBA player whose height is 85 inches is taller than average.
- Height = 79 + 3.5(3.89) = 90.67 inches, which is over 7.7 feet tall. There are very few NBA players this tall; so, the answer is no, not likely.
Let X = an SAT math score and Y = an ACT math score.
- X = 720 = 1.74 The exam score of 720 is 1.74 standard deviations above the mean of 520.
- z = 1.5
The math SAT score is 520 + 1.5(115) ≈ 692.5. The exam score of 692.5 is 1.5 standard deviations above the mean of 520. - = ≈ 1.59, the z-score for the SAT. = ≈ 1.70, the z-scores for the ACT. With respect to the test they took, the person who took the ACT did better—has the higher z-score).
- X ~ N(36, 10)
- The probability that a person consumes more than 40 percent of their calories as fat is 0.3446.
- Approximately 25 percent of people consume less than 29.26 percent of their calories as fat.
- X = number of hours that a Chinese four-year-old in a rural area is unsupervised during the day.
- X ~ N(3, 1.5)
- The probability that the child spends less than one hour a day unsupervised is 0.0918.
- The probability that a child spends over 10 hours a day unsupervised is less than 0.0001.
- 2.21 hours
- X = the distribution of the number of days a particular type of criminal trial will take
- X ~ N(21, 7)
- The probability that a randomly selected trial will last more than 24 days is 0.3336.
- 22.77
- mean = 5.51, s = 2.15
- Check student's solution.
- Check student's solution.
- Check student's solution.
- X ~ N(5.51, 2.15)
- 0.6029
- The cumulative frequency for less than 6.1 minutes is 0.64.
- The answers to part f and part g are not exactly the same, because the normal distribution is only an approximation to the real one.
- The answers to part f and part g are close, because a normal distribution is an excellent approximation when the sample size is greater than 30.
- The approximation would have been less accurate, because the smaller sample size means that the data does not fit a normal curve as well.
- mean = 60,136
s = 10,468 - Answers will vary
- Answers will vary
- Answers will vary
- X ~ N(60136, 10468)
- 0.7440
- The cumulative relative frequency is 43/60 = 0.717.
- The answers for part f and part g are not the same because the normal distribution is only an approximation.
- n = 100; p = 0.1; q = 0.9
- μ = np = (100)(0.10) = 10
- σ = = = 3
- z = ±1: x1 = µ + zσ = 10 + 1(3) = 13 and x2 = µ – zσ = 10 – 1(3) = 7. 68 percent of the defective cars will fall between seven and 13
- z = ±2: x1 = µ + zσ = 10 + 2(3) = 16 and x2 = µ – zσ = 10 – 2(3) = 4. 95 percent of the defective cars will fall between four and 16
- z = ±3: x1 = µ + zσ = 10 + 3(3) = 19 and x2 = µ – zσ = 10 – 3(3) = 1. 99.7 percent of the defective cars will fall between one and 19
- n = 190; p = = 0.2; q = 0.8
- μ = np = (190)(0.2) = 38
- σ = = = 5.5136
- For this problem: P(34 < x < 54) = normalcdf(34,54,48,5.5136) = 0.7641
- For this problem: P(54 < x < 64) = normalcdf(54,64,48,5.5136) = 0.0018
- For this problem: P(x > 64) = normalcdf(64,1099,48,5.5136) = 0.0000012 (approximately 0)