Tests of independence involve using a contingency table of observed (data) values.
The test statistic for a test of independence is similar to that of a goodness-of-fit test
where
- O = observed values,
- E = expected values,
- i = the number of rows in the table, and
- j = the number of columns in the table.
There are terms of the form .
A test of independence determines whether two factors are independent. You first encountered the term independence in Probability Topics. As a review, consider the following example.
Note
The expected value for each cell needs to be at least five for you to use this test.
Example 11.5
Suppose A = a speeding violation in the last year and B = a cell phone user while driving. If A and B are independent, then P(A AND B) = P(A)P(B). A AND B is the event that a driver received a speeding violation last year and also used a cell phone while driving. Suppose, in a study of drivers who received speeding violations in the last year, and who used cell phones while driving, that 755 people were surveyed. Out of the 755, 70 had a speeding violation and 685 did not; 305 used cell phones while driving and 450 did not.
Let y = expected number of drivers who used a cell phone while driving and received speeding violations.
If A and B are independent, then P(A AND B) = P(A)P(B). By substitution,
Solve for y: y =
About 28 people from the sample are expected to use cell phones while driving and to receive speeding violations.
In a test of independence, we state the null and alternative hypotheses in words. Since the contingency table consists of two factors, the null hypothesis states that the factors are independent and the alternative hypothesis states that they are not independent (dependent). If we do a test of independence using the example, then the null hypothesis is the following:
H0: Being a cell phone user while driving and receiving a speeding violation are independent events.
If the null hypothesis were true, we would expect about 28 people to use cell phones while driving and to receive a speeding violation.
The test of independence is always right-tailed because of the calculation of the test statistic. If the expected and observed values are not close together, then the test statistic is very large and way out in the right tail of the chi-square curve, as it is in a goodness-of-fit.
The number of degrees of freedom for the test of independence is
df = (number of columns – 1)(number of rows – 1).
The following formula calculates the expected number (E):
A sample of 300 students is taken. Of the students surveyed, 50 were music students, while 250 were not. 97 were on the honor roll, while 203 were not. If we assume being a music student and being on the honor roll are independent events, what is the expected number of music students who are also on the honor roll?
Example 11.6
In a volunteer group, adults 21 and older volunteer from one to nine hours each week to spend time with a disabled senior citizen. The program recruits among community college students, four-year college students, and non-students. In Table 11.15 is a sample of the adult volunteers and the number of hours they volunteer per week.
Type of Volunteer | 1–3 Hours | 4–6 Hours | 7–9 Hours | Row Total |
---|---|---|---|---|
Community College Students | 111 | 96 | 48 | 255 |
Four-year College Students | 96 | 133 | 61 | 290 |
Non-students | 91 | 150 | 53 | 294 |
Column Total | 298 | 379 | 162 | 839 |
Is the number of hours volunteered independent of the type of volunteer?
The Bureau of Labor Statistics gathers data about employment in the United States. A sample is taken to calculate the number of U.S. citizens working in one of several industry sectors over time. Table 11.17 shows the results:
Industry Sector | 2000 | 2010 | 2020 | Total |
---|---|---|---|---|
Non-agriculture Wage and Salary | 13,243 | 13,044 | 15,018 | 41,305 |
Goods-producing, Excluding Agriculture | 2,457 | 1,771 | 1,950 | 6,178 |
Services-providing | 10,786 | 11,273 | 13,068 | 35,127 |
Agriculture, Forestry, Fishing, and Hunting | 240 | 214 | 201 | 655 |
Non-agriculture Self-employed and Unpaid Family Worker | 931 | 894 | 972 | 2,797 |
Secondary Wage and Salary Jobs in Agriculture and Private Household Industries | 14 | 11 | 11 | 36 |
Secondary Jobs as a Self-employed or Unpaid Family Worker | 196 | 144 | 152 | 492 |
Total | 27,867 | 27,351 | 31,372 | 86,590 |
We want to know if the change in the number of jobs is independent of the change in years. State the null and alternative hypotheses and the degrees of freedom.
Example 11.7
De Anza College is interested in the relationship between anxiety level and the need to succeed in school. A random sample of 400 students took a test that measured anxiety level and need to succeed in school. Table 11.18 shows the results. De Anza College wants to know if anxiety level and need to succeed in school are independent events.
Need to Succeed in School | High Anxiety |
Med-High Anxiety |
Medium Anxiety |
Med-Low Anxiety |
Low Anxiety |
Row Total |
---|---|---|---|---|---|---|
High Need | 35 | 42 | 53 | 15 | 10 | 155 |
Medium Need | 18 | 48 | 63 | 33 | 31 | 193 |
Low Need | 4 | 5 | 11 | 15 | 17 | 52 |
Column Total | 57 | 95 | 127 | 63 | 58 | 400 |
a. How many high anxiety level students are expected to have a high need to succeed in school?
b. If the two variables are independent, how many students do you expect to have a low need to succeed in school and a med-low level of anxiety?
c. = ________
d. The expected number of students who have a med-low anxiety level and a low need to succeed in school is about ________.
Refer back to the information in Try It. How many services-providing jobs are there expected to be in 2020? How many nonagriculture wage and salary jobs are there expected to be in 2020?