Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Statistics

9.2 Outcomes and the Type I and Type II Errors

Statistics9.2 Outcomes and the Type I and Type II Errors

Menu
Table of contents
  1. Preface
  2. 1 Sampling and Data
    1. Introduction
    2. 1.1 Definitions of Statistics, Probability, and Key Terms
    3. 1.2 Data, Sampling, and Variation in Data and Sampling
    4. 1.3 Frequency, Frequency Tables, and Levels of Measurement
    5. 1.4 Experimental Design and Ethics
    6. 1.5 Data Collection Experiment
    7. 1.6 Sampling Experiment
    8. Key Terms
    9. Chapter Review
    10. Practice
    11. Homework
    12. Bringing It Together: Homework
    13. References
    14. Solutions
  3. 2 Descriptive Statistics
    1. Introduction
    2. 2.1 Stem-and-Leaf Graphs (Stemplots), Line Graphs, and Bar Graphs
    3. 2.2 Histograms, Frequency Polygons, and Time Series Graphs
    4. 2.3 Measures of the Location of the Data
    5. 2.4 Box Plots
    6. 2.5 Measures of the Center of the Data
    7. 2.6 Skewness and the Mean, Median, and Mode
    8. 2.7 Measures of the Spread of the Data
    9. 2.8 Descriptive Statistics
    10. Key Terms
    11. Chapter Review
    12. Formula Review
    13. Practice
    14. Homework
    15. Bringing It Together: Homework
    16. References
    17. Solutions
  4. 3 Probability Topics
    1. Introduction
    2. 3.1 Terminology
    3. 3.2 Independent and Mutually Exclusive Events
    4. 3.3 Two Basic Rules of Probability
    5. 3.4 Contingency Tables
    6. 3.5 Tree and Venn Diagrams
    7. 3.6 Probability Topics
    8. Key Terms
    9. Chapter Review
    10. Formula Review
    11. Practice
    12. Bringing It Together: Practice
    13. Homework
    14. Bringing It Together: Homework
    15. References
    16. Solutions
  5. 4 Discrete Random Variables
    1. Introduction
    2. 4.1 Probability Distribution Function (PDF) for a Discrete Random Variable
    3. 4.2 Mean or Expected Value and Standard Deviation
    4. 4.3 Binomial Distribution (Optional)
    5. 4.4 Geometric Distribution (Optional)
    6. 4.5 Hypergeometric Distribution (Optional)
    7. 4.6 Poisson Distribution (Optional)
    8. 4.7 Discrete Distribution (Playing Card Experiment)
    9. 4.8 Discrete Distribution (Lucky Dice Experiment)
    10. Key Terms
    11. Chapter Review
    12. Formula Review
    13. Practice
    14. Homework
    15. References
    16. Solutions
  6. 5 Continuous Random Variables
    1. Introduction
    2. 5.1 Continuous Probability Functions
    3. 5.2 The Uniform Distribution
    4. 5.3 The Exponential Distribution (Optional)
    5. 5.4 Continuous Distribution
    6. Key Terms
    7. Chapter Review
    8. Formula Review
    9. Practice
    10. Homework
    11. References
    12. Solutions
  7. 6 The Normal Distribution
    1. Introduction
    2. 6.1 The Standard Normal Distribution
    3. 6.2 Using the Normal Distribution
    4. 6.3 Normal Distribution—Lap Times
    5. 6.4 Normal Distribution—Pinkie Length
    6. Key Terms
    7. Chapter Review
    8. Formula Review
    9. Practice
    10. Homework
    11. References
    12. Solutions
  8. 7 The Central Limit Theorem
    1. Introduction
    2. 7.1 The Central Limit Theorem for Sample Means (Averages)
    3. 7.2 The Central Limit Theorem for Sums (Optional)
    4. 7.3 Using the Central Limit Theorem
    5. 7.4 Central Limit Theorem (Pocket Change)
    6. 7.5 Central Limit Theorem (Cookie Recipes)
    7. Key Terms
    8. Chapter Review
    9. Formula Review
    10. Practice
    11. Homework
    12. References
    13. Solutions
  9. 8 Confidence Intervals
    1. Introduction
    2. 8.1 A Single Population Mean Using the Normal Distribution
    3. 8.2 A Single Population Mean Using the Student's t-Distribution
    4. 8.3 A Population Proportion
    5. 8.4 Confidence Interval (Home Costs)
    6. 8.5 Confidence Interval (Place of Birth)
    7. 8.6 Confidence Interval (Women's Heights)
    8. Key Terms
    9. Chapter Review
    10. Formula Review
    11. Practice
    12. Homework
    13. References
    14. Solutions
  10. 9 Hypothesis Testing with One Sample
    1. Introduction
    2. 9.1 Null and Alternative Hypotheses
    3. 9.2 Outcomes and the Type I and Type II Errors
    4. 9.3 Distribution Needed for Hypothesis Testing
    5. 9.4 Rare Events, the Sample, and the Decision and Conclusion
    6. 9.5 Additional Information and Full Hypothesis Test Examples
    7. 9.6 Hypothesis Testing of a Single Mean and Single Proportion
    8. Key Terms
    9. Chapter Review
    10. Formula Review
    11. Practice
    12. Homework
    13. References
    14. Solutions
  11. 10 Hypothesis Testing with Two Samples
    1. Introduction
    2. 10.1 Two Population Means with Unknown Standard Deviations
    3. 10.2 Two Population Means with Known Standard Deviations
    4. 10.3 Comparing Two Independent Population Proportions
    5. 10.4 Matched or Paired Samples (Optional)
    6. 10.5 Hypothesis Testing for Two Means and Two Proportions
    7. Key Terms
    8. Chapter Review
    9. Formula Review
    10. Practice
    11. Homework
    12. Bringing It Together: Homework
    13. References
    14. Solutions
  12. 11 The Chi-Square Distribution
    1. Introduction
    2. 11.1 Facts About the Chi-Square Distribution
    3. 11.2 Goodness-of-Fit Test
    4. 11.3 Test of Independence
    5. 11.4 Test for Homogeneity
    6. 11.5 Comparison of the Chi-Square Tests
    7. 11.6 Test of a Single Variance
    8. 11.7 Lab 1: Chi-Square Goodness-of-Fit
    9. 11.8 Lab 2: Chi-Square Test of Independence
    10. Key Terms
    11. Chapter Review
    12. Formula Review
    13. Practice
    14. Homework
    15. Bringing It Together: Homework
    16. References
    17. Solutions
  13. 12 Linear Regression and Correlation
    1. Introduction
    2. 12.1 Linear Equations
    3. 12.2 The Regression Equation
    4. 12.3 Testing the Significance of the Correlation Coefficient (Optional)
    5. 12.4 Prediction (Optional)
    6. 12.5 Outliers
    7. 12.6 Regression (Distance from School) (Optional)
    8. 12.7 Regression (Textbook Cost) (Optional)
    9. 12.8 Regression (Fuel Efficiency) (Optional)
    10. Key Terms
    11. Chapter Review
    12. Formula Review
    13. Practice
    14. Homework
    15. Bringing It Together: Homework
    16. References
    17. Solutions
  14. 13 F Distribution and One-way Anova
    1. Introduction
    2. 13.1 One-Way ANOVA
    3. 13.2 The F Distribution and the F Ratio
    4. 13.3 Facts About the F Distribution
    5. 13.4 Test of Two Variances
    6. 13.5 Lab: One-Way ANOVA
    7. Key Terms
    8. Chapter Review
    9. Formula Review
    10. Practice
    11. Homework
    12. References
    13. Solutions
  15. A | Appendix A Review Exercises (Ch 3–13)
  16. B | Appendix B Practice Tests (1–4) and Final Exams
  17. C | Data Sets
  18. D | Group and Partner Projects
  19. E | Solution Sheets
  20. F | Mathematical Phrases, Symbols, and Formulas
  21. G | Notes for the TI-83, 83+, 84, 84+ Calculators
  22. H | Tables
  23. Index

When you perform a hypothesis test, there are four possible outcomes depending on the actual truth, or falseness, of the null hypothesis H0 and the decision to reject or not. The outcomes are summarized in the following table:

ACTION H0 IS ACTUALLY ...
True False
Do not reject H0 Correct outcome Type II error
Reject H0 Type I error Correct outcome
Table 9.2

The four possible outcomes in the table are as follows:

  1. The decision is not to reject H0 when H0 is true (correct decision).
  2. The decision is to reject H0 when, in fact, H0 is true (incorrect decision known as a Type I error).
  3. The decision is not to reject H0 when, in fact, H0 is false (incorrect decision known as a Type II error).
  4. The decision is to reject H0 when H0 is false (correct decision whose probability is called the Power of the Test).

Each of the errors occurs with a particular probability. The Greek letters α and β represent the probabilities.

α = probability of a Type I error = P(Type I error) = probability of rejecting the null hypothesis when the null hypothesis is true.

β = probability of a Type II error = P(Type II error) = probability of not rejecting the null hypothesis when the null hypothesis is false.

α and β should be as small as possible because they are probabilities of errors. They are rarely zero.

The Power of the Test is 1 – β. Ideally, we want a high power that is as close to one as possible. Increasing the sample size can increase the Power of the Test.

The following are examples of Type I and Type II errors.

Example 9.5

Suppose the null hypothesis, H0, is: Frank's rock climbing equipment is safe.

Type I error: Frank does not go rock climbing because he considers that the equipment is not safe, when in fact, the equipment is really safe. Frank is making the mistake of rejecting the null hypothesis, when the equipment is actually safe!

Type II error: Frank goes climbing, thinking that his equipment is safe, but this is a mistake, and he painfully realizes that his equipment is not as safe as it should have been. Frank assumed that the null hypothesis was true, when it was not.

α = probability that Frank thinks his rock climbing equipment may not be safe when, in fact, it really is safe. β = probability that Frank thinks his rock climbing equipment may be safe when, in fact, it is not safe.

Notice that, in this case, the error with the greater consequence is the Type II error. (If Frank thinks his rock climbing equipment is safe, he will go ahead and use it.)

Try It 9.5

Suppose the null hypothesis, H0, is: the blood cultures contain no traces of pathogen X. State the Type I and Type II errors.

Example 9.6

Suppose the null hypothesis, H0, is: a tomato plant is alive when a class visits the school garden.

Type I error: The null hypothesis claims that the tomato plant is alive, and it is true, but the students make the mistake of thinking that the plant is already dead.

Type II error: The tomato plant is already dead (the null hypothesis is false), but the students do not notice it, and believe that the tomato plant is alive.

α = probability that the class thinks the tomato plant is dead when, in fact, it is alive = P(Type I error). β = probability that the class thinks the tomato plant is alive when, in fact, it is dead = P(Type II error).

The error with the greater consequence is the Type I error. (If the class thinks the plant is dead, they will not water it.)

Try It 9.6

Suppose the null hypothesis, H0, is: a patient is not sick. Which type of error has the greater consequence, Type I or Type II?

Example 9.7

It’s a Boy Genetic Labs, a genetics company, claims to be able to increase the likelihood that a pregnancy will result in a boy being born. Statisticians want to test the claim. Suppose that the null hypothesis, H0, is: It’s a Boy Genetic Labs has no effect on gender outcome.

Type I error: This error results when a true null hypothesis is rejected. In the context of this scenario, we would state that we believe that It’s a Boy Genetic Labs influences the gender outcome, when in fact it has no effect. The probability of this error occurring is denoted by the Greek letter alpha, α.

Type II error: This error results when we fail to reject a false null hypothesis. In context, we would state that It’s a Boy Genetic Labs does not influence the gender outcome of a pregnancy when, in fact, it does. The probability of this error occurring is denoted by the Greek letter beta, β.

The error with the greater consequence would be the Type I error since couples would use the It’s a Boy Genetic Labs product in hopes of increasing the chances of having a boy.

Try It 9.7

Red tide is a bloom of poison-producing algae—a few different species of a class of plankton called dinoflagellates. When the weather and water conditions cause these blooms, shellfish such as clams living in the area develop dangerous levels of a paralysis-inducing toxin. In Massachusetts, the Division of Marine Fisheries montors levels of the toxin in shellfish by regular sampling of shellfish along the coastline. If the mean level of toxin in clams exceeds 800 μg (micrograms) of toxin per kilogram of clam meat in any area, clam harvesting is banned there until the bloom is over and levels of toxin in clams subside. Describe both a Type I and a Type II error in this context, and state which error has the greater consequence.

Example 9.8

A certain experimental drug claims a cure rate of at least 75 percent for males with a disease. Describe both the Type I and Type II errors in context. Which error is the more serious?

Type I: A patient believes the cure rate for the drug is less than 75 percent when it actually is at least 75 percent.

Type II: A patient believes the experimental drug has at least a 75 percent cure rate when it has a cure rate that is less than 75 percent.

In this scenario, the Type II error contains the more severe consequence. If a patient believes the drug works at least 75 percent of the time, this most likely will influence the patient’s (and doctor’s) choice about whether to use the drug as a treatment option.

Try It 9.8

Determine both Type I and Type II errors for the following scenario:

Assume a null hypothesis, H0, that states the percentage of adults with jobs is at least 88 percent.

Identify the Type I and Type II errors from these four possible choices.

  1. Not to reject the null hypothesis that the percentage of adults who have jobs is at least 88 percent when that percentage is actually less than 88 percent
  2. Not to reject the null hypothesis that the percentage of adults who have jobs is at least 88 percent when the percentage is actually at least 88 percent
  3. Reject the null hypothesis that the percentage of adults who have jobs is at least 88 percent when the percentage is actually at least 88 percent
  4. Reject the null hypothesis that the percentage of adults who have jobs is at least 88 percent when that percentage is actually less than 88 percent
Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute Texas Education Agency (TEA). The original material is available at: https://www.texasgateway.org/book/tea-statistics . Changes were made to the original material, including updates to art, structure, and other content updates.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/statistics/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/statistics/pages/1-introduction
Citation information

© Apr 5, 2023 Texas Education Agency (TEA). The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.