Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Statistics

Key Terms

StatisticsKey Terms

Menu
Table of contents
  1. Preface
  2. 1 Sampling and Data
    1. Introduction
    2. 1.1 Definitions of Statistics, Probability, and Key Terms
    3. 1.2 Data, Sampling, and Variation in Data and Sampling
    4. 1.3 Frequency, Frequency Tables, and Levels of Measurement
    5. 1.4 Experimental Design and Ethics
    6. 1.5 Data Collection Experiment
    7. 1.6 Sampling Experiment
    8. Key Terms
    9. Chapter Review
    10. Practice
    11. Homework
    12. Bringing It Together: Homework
    13. References
    14. Solutions
  3. 2 Descriptive Statistics
    1. Introduction
    2. 2.1 Stem-and-Leaf Graphs (Stemplots), Line Graphs, and Bar Graphs
    3. 2.2 Histograms, Frequency Polygons, and Time Series Graphs
    4. 2.3 Measures of the Location of the Data
    5. 2.4 Box Plots
    6. 2.5 Measures of the Center of the Data
    7. 2.6 Skewness and the Mean, Median, and Mode
    8. 2.7 Measures of the Spread of the Data
    9. 2.8 Descriptive Statistics
    10. Key Terms
    11. Chapter Review
    12. Formula Review
    13. Practice
    14. Homework
    15. Bringing It Together: Homework
    16. References
    17. Solutions
  4. 3 Probability Topics
    1. Introduction
    2. 3.1 Terminology
    3. 3.2 Independent and Mutually Exclusive Events
    4. 3.3 Two Basic Rules of Probability
    5. 3.4 Contingency Tables
    6. 3.5 Tree and Venn Diagrams
    7. 3.6 Probability Topics
    8. Key Terms
    9. Chapter Review
    10. Formula Review
    11. Practice
    12. Bringing It Together: Practice
    13. Homework
    14. Bringing It Together: Homework
    15. References
    16. Solutions
  5. 4 Discrete Random Variables
    1. Introduction
    2. 4.1 Probability Distribution Function (PDF) for a Discrete Random Variable
    3. 4.2 Mean or Expected Value and Standard Deviation
    4. 4.3 Binomial Distribution (Optional)
    5. 4.4 Geometric Distribution (Optional)
    6. 4.5 Hypergeometric Distribution (Optional)
    7. 4.6 Poisson Distribution (Optional)
    8. 4.7 Discrete Distribution (Playing Card Experiment)
    9. 4.8 Discrete Distribution (Lucky Dice Experiment)
    10. Key Terms
    11. Chapter Review
    12. Formula Review
    13. Practice
    14. Homework
    15. References
    16. Solutions
  6. 5 Continuous Random Variables
    1. Introduction
    2. 5.1 Continuous Probability Functions
    3. 5.2 The Uniform Distribution
    4. 5.3 The Exponential Distribution (Optional)
    5. 5.4 Continuous Distribution
    6. Key Terms
    7. Chapter Review
    8. Formula Review
    9. Practice
    10. Homework
    11. References
    12. Solutions
  7. 6 The Normal Distribution
    1. Introduction
    2. 6.1 The Standard Normal Distribution
    3. 6.2 Using the Normal Distribution
    4. 6.3 Normal Distribution—Lap Times
    5. 6.4 Normal Distribution—Pinkie Length
    6. Key Terms
    7. Chapter Review
    8. Formula Review
    9. Practice
    10. Homework
    11. References
    12. Solutions
  8. 7 The Central Limit Theorem
    1. Introduction
    2. 7.1 The Central Limit Theorem for Sample Means (Averages)
    3. 7.2 The Central Limit Theorem for Sums (Optional)
    4. 7.3 Using the Central Limit Theorem
    5. 7.4 Central Limit Theorem (Pocket Change)
    6. 7.5 Central Limit Theorem (Cookie Recipes)
    7. Key Terms
    8. Chapter Review
    9. Formula Review
    10. Practice
    11. Homework
    12. References
    13. Solutions
  9. 8 Confidence Intervals
    1. Introduction
    2. 8.1 A Single Population Mean Using the Normal Distribution
    3. 8.2 A Single Population Mean Using the Student's t-Distribution
    4. 8.3 A Population Proportion
    5. 8.4 Confidence Interval (Home Costs)
    6. 8.5 Confidence Interval (Place of Birth)
    7. 8.6 Confidence Interval (Women's Heights)
    8. Key Terms
    9. Chapter Review
    10. Formula Review
    11. Practice
    12. Homework
    13. References
    14. Solutions
  10. 9 Hypothesis Testing with One Sample
    1. Introduction
    2. 9.1 Null and Alternative Hypotheses
    3. 9.2 Outcomes and the Type I and Type II Errors
    4. 9.3 Distribution Needed for Hypothesis Testing
    5. 9.4 Rare Events, the Sample, and the Decision and Conclusion
    6. 9.5 Additional Information and Full Hypothesis Test Examples
    7. 9.6 Hypothesis Testing of a Single Mean and Single Proportion
    8. Key Terms
    9. Chapter Review
    10. Formula Review
    11. Practice
    12. Homework
    13. References
    14. Solutions
  11. 10 Hypothesis Testing with Two Samples
    1. Introduction
    2. 10.1 Two Population Means with Unknown Standard Deviations
    3. 10.2 Two Population Means with Known Standard Deviations
    4. 10.3 Comparing Two Independent Population Proportions
    5. 10.4 Matched or Paired Samples (Optional)
    6. 10.5 Hypothesis Testing for Two Means and Two Proportions
    7. Key Terms
    8. Chapter Review
    9. Formula Review
    10. Practice
    11. Homework
    12. Bringing It Together: Homework
    13. References
    14. Solutions
  12. 11 The Chi-Square Distribution
    1. Introduction
    2. 11.1 Facts About the Chi-Square Distribution
    3. 11.2 Goodness-of-Fit Test
    4. 11.3 Test of Independence
    5. 11.4 Test for Homogeneity
    6. 11.5 Comparison of the Chi-Square Tests
    7. 11.6 Test of a Single Variance
    8. 11.7 Lab 1: Chi-Square Goodness-of-Fit
    9. 11.8 Lab 2: Chi-Square Test of Independence
    10. Key Terms
    11. Chapter Review
    12. Formula Review
    13. Practice
    14. Homework
    15. Bringing It Together: Homework
    16. References
    17. Solutions
  13. 12 Linear Regression and Correlation
    1. Introduction
    2. 12.1 Linear Equations
    3. 12.2 The Regression Equation
    4. 12.3 Testing the Significance of the Correlation Coefficient (Optional)
    5. 12.4 Prediction (Optional)
    6. 12.5 Outliers
    7. 12.6 Regression (Distance from School) (Optional)
    8. 12.7 Regression (Textbook Cost) (Optional)
    9. 12.8 Regression (Fuel Efficiency) (Optional)
    10. Key Terms
    11. Chapter Review
    12. Formula Review
    13. Practice
    14. Homework
    15. Bringing It Together: Homework
    16. References
    17. Solutions
  14. 13 F Distribution and One-way Anova
    1. Introduction
    2. 13.1 One-Way ANOVA
    3. 13.2 The F Distribution and the F Ratio
    4. 13.3 Facts About the F Distribution
    5. 13.4 Test of Two Variances
    6. 13.5 Lab: One-Way ANOVA
    7. Key Terms
    8. Chapter Review
    9. Formula Review
    10. Practice
    11. Homework
    12. References
    13. Solutions
  15. A | Appendix A Review Exercises (Ch 3–13)
  16. B | Appendix B Practice Tests (1–4) and Final Exams
  17. C | Data Sets
  18. D | Group and Partner Projects
  19. E | Solution Sheets
  20. F | Mathematical Phrases, Symbols, and Formulas
  21. G | Notes for the TI-83, 83+, 84, 84+ Calculators
  22. H | Tables
  23. Index
box plot
a graph that gives a quick picture of the middle 50 percent of the data
first quartile
the value that is the median of the lower half of the ordered data set
frequency
the number of times a value of the data occurs
frequency polygon
a data display that looks like a line graph but uses intervals to display ranges of large amounts of data
frequency table
a data representation in which grouped data are displayed along with the corresponding frequencies
histogram
a graphical representation in x-y form of the distribution of data in a data set; x represents the data and y represents the frequency, or relative frequency; the graph consists of contiguous rectangles
interquartile range
or IQR, is the range of the middle 50 percent of the data values; the IQR is found by subtracting the first quartile from the third quartile
interval
also called a class interval; an interval represents a range of data and is used when displaying large data sets
mean
a number that measures the central tendency of the data; a common name for mean is average.
The term mean is a shortened form of arithmetic mean. By definition, the mean for a sample (denoted by x¯x) is x ¯  =  Sum of all values in the sample Number of values in the sample x ¯  =  Sum of all values in the sample Number of values in the sample , and the mean for a population (denoted by μ) is μ= Sum of all values in the population Number of values in the population μ= Sum of all values in the population Number of values in the population
median
a number that separates ordered data into halves; half the values are the same number or smaller than the median, and half the values are the same number or larger than the median
The median may or may not be part of the data.
midpoint
the mean of an interval in a frequency table
mode
the value that appears most frequently in a set of data
outlier
an observation that does not fit the rest of the data
paired data set
two data sets that have a one-to-one relationship so that
  • both data sets are the same size, and
  • each data point in one data set is matched with exactly one point from the other set
percentile
a number that divides ordered data into hundredths; percentiles may or may not be part of the data. The median of the data is the second quartile and the 50th percentile
The first and third quartiles are the 25th and the 75th percentiles, respectively.
quartiles
the numbers that separate the data into quarters; quartiles may or may not be part of the data; the second quartile is the median of the data
relative frequency
the ratio of the number of times a value of the data occurs in the set of all outcomes to the number of all outcomes
skewed
used to describe data that is not symmetrical; when the right side of a graph looks chopped off compared to the left side, we say it is skewed to the left.
When the left side of the graph looks chopped off compared to the right side, we say the data are skewed to the right. Alternatively, when the lower values of the data are more spread out, we say the data are skewed to the left. When the greater values are more spread out, the data are skewed to the right.
standard deviation
a number that is equal to the square root of the variance and measures how far data values are from their mean; notation: s for sample standard deviation and σ for population standard deviation
variance
mean of the squared deviations from the mean, or the square of the standard deviation; for a set of data, a deviation can be represented as x x ¯ x ¯ where x is a value of the data and x ¯ x ¯ is the sample mean; the sample variance is equal to the sum of the squares of the deviations divided by the difference of the sample size and 1
Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute Texas Education Agency (TEA). The original material is available at: https://www.texasgateway.org/book/tea-statistics . Changes were made to the original material, including updates to art, structure, and other content updates.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/statistics/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/statistics/pages/1-introduction
Citation information

© Jan 18, 2023 Texas Education Agency (TEA). The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.