University Physics Volume 2

# Index

C
capacitive reactance 15.2 Simple AC Circuits
Carnot cycle 4.5 The Carnot Cycle
Carnot engine 4.5 The Carnot Cycle
Carnot’s principle 4.5 The Carnot Cycle
Clausius statement of the second law of thermodynamics 4.1 Reversible and Irreversible Processes
coefficient of linear expansion 1.3 Thermal Expansion
coefficient of performance 4.3 Refrigerators and Heat Pumps
coefficient of volume expansion 1.3 Thermal Expansion
cold reservoir 4.2 Heat Engines
Comet McNaught Introduction
condensation 1.5 Phase Changes
constant-volume gas thermometer 1.2 Thermometers and Temperature Scales
conventional current 9.1 Electrical Current
Cooper pairs 9.6 Superconductors
Coulomb force 5.3 Coulomb's Law
critical point 1.5 Phase Changes
Critical pressure 1.5 Phase Changes
cylindrical symmetry 6.3 Applying Gauss’s Law
E
eddy current 13.5 Eddy Currents
efficiency (e) 4.2 Heat Engines
electric charge 5.1 Electric Charge
electric field 5.4 Electric Field
electric force 5.1 Electric Charge
electric potential difference 7.2 Electric Potential and Potential Difference
electrical conductivity 9.3 Resistivity and Resistance
electrical current 9.1 Electrical Current
electrical potential energy 7.1 Electric Potential Energy
electrolytic capacitor 8.1 Capacitors and Capacitance
electromotive force (emf) 10.1 Electromotive Force
electrostatic attraction 5.1 Electric Charge
electrostatic force 5.3 Coulomb's Law
electrostatic precipitators 7.6 Applications of Electrostatics
electrostatic repulsion 5.1 Electric Charge
electrostatics 5.3 Coulomb's Law
energy conservation 3.3 First Law of Thermodynamics
entropy 4.6 Entropy
entropy statement of the second law of thermodynamics 4.6 Entropy
equation of state 3.1 Thermodynamic Systems
evaporation 1.5 Phase Changes
expansion joints 1.3 Thermal Expansion
extensive variable 3.1 Thermodynamic Systems
F
ferromagnetic material 12.7 Magnetism in Matter
field line density 5.6 Electric Field Lines
first law of thermodynamics 3.3 First Law of Thermodynamics
flash camera 10.5 RC Circuits
freezing of water 1.3 Thermal Expansion
J
Josephson junction 9.6 Superconductors
junction rule 10.3 Kirchhoff's Rules
K
Kamerlingh Onnes 9.6 Superconductors
Kelvin statement of the second law of thermodynamics 4.4 Statements of the Second Law of Thermodynamics
Kirchhoff’s rules 10.3 Kirchhoff's Rules
M
magnetic domains 12.7 Magnetism in Matter
magnetic energy density 14.3 Energy in a Magnetic Field
magnetic field lines 11.2 Magnetic Fields and Lines
magnetic monopoles 11.2 Magnetic Fields and Lines
magnetic resonance imaging 12.6 Solenoids and Toroids
magnetic susceptibility 12.7 Magnetism in Matter
Maxwell-Boltzmann distribution 2.4 Distribution of Molecular Speeds
Meissner effect 9.6 Superconductors
molar heat capacity at constant pressure 3.5 Heat Capacities of an Ideal Gas
motionally induced emf 13.3 Motional Emf
multi-loop circuit 10.3 Kirchhoff's Rules
mutual inductance (M) 14.1 Mutual Inductance
N
natural convection 1.6 Mechanisms of Heat Transfer
net rate of heat transfer by radiation 1.6 Mechanisms of Heat Transfer
non-quasi-static processes 3.4 Thermodynamic Processes
nonohmic 9.4 Ohm's Law
normal vector 6.1 Electric Flux
S
scalar field 5.4 Electric Field
Schrieffer 9.6 Superconductors
smartphone Introduction
spherical symmetry 6.3 Applying Gauss’s Law
standard temperature and pressure (STP) 2.1 Molecular Model of an Ideal Gas
starter motor 9.1 Electrical Current
static electricity 5.1 Electric Charge
Stefan-Boltzmann law of radiation 1.6 Mechanisms of Heat Transfer
step-down transformer 15.6 Transformers
step-up transformer 15.6 Transformers
Stirling engine 4.6 Entropy
sublimation 1.5 Phase Changes
superconductivity 9.6 Superconductors
supercritical fluid 1.5 Phase Changes
superposition 5.4 Electric Field
U
ultraviolet radiation 16.5 The Electromagnetic Spectrum
unified atomic mass unit (u) 2.1 Molecular Model of an Ideal Gas
universal gas constant 2.1 Molecular Model of an Ideal Gas
W
working substance 4.2 Heat Engines
Y
Order a print copy

As an Amazon Associate we earn from qualifying purchases.