Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
University Physics Volume 2

7.4 Determining Field from Potential

University Physics Volume 27.4 Determining Field from Potential

Learning Objectives

By the end of this section, you will be able to:

  • Explain how to calculate the electric field in a system from the given potential
  • Calculate the electric field in a given direction from a given potential
  • Calculate the electric field throughout space from a given potential

Recall that we were able, in certain systems, to calculate the potential by integrating over the electric field. As you may already suspect, this means that we may calculate the electric field by taking derivatives of the potential, although going from a scalar to a vector quantity introduces some interesting wrinkles. We frequently need EE to calculate the force in a system; since it is often simpler to calculate the potential directly, there are systems in which it is useful to calculate V and then derive EE from it.

In general, regardless of whether the electric field is uniform, it points in the direction of decreasing potential, because the force on a positive charge is in the direction of EE and also in the direction of lower potential V. Furthermore, the magnitude of EE equals the rate of decrease of V with distance. The faster V decreases over distance, the greater the electric field. This gives us the following result.

Relationship between Voltage and Uniform Electric Field

In equation form, the relationship between voltage and uniform electric field is

E=ΔVΔsE=ΔVΔs

where ΔsΔs is the distance over which the change in potential ΔVΔV takes place. The minus sign tells us that E points in the direction of decreasing potential. The electric field is said to be the gradient (as in grade or slope) of the electric potential.

For continually changing potentials, ΔVΔV and ΔsΔs become infinitesimals, and we need differential calculus to determine the electric field. As shown in Figure 7.27, if we treat the distance ΔsΔs as very small so that the electric field is essentially constant over it, we find that

Es=dVds.Es=dVds.
The figure shows the electric field component of two points A and B separated by distance delta s and having a potential difference of delta V.
Figure 7.27 The electric field component, E1E1, along the displacement ΔsΔs is given by E=ΔVΔsE=ΔVΔs. Note that A and B are assumed to be so close together that the field is constant along ΔsΔs.

Therefore, the electric field components in the Cartesian directions are given by

Ex=Vx,Ey=Vy,Ez=Vz.Ex=Vx,Ey=Vy,Ez=Vz.
7.13

This allows us to define the “grad” or “del” vector operator, which allows us to compute the gradient in one step. In Cartesian coordinates, it takes the form

=i^x+j^y+k^z.=i^x+j^y+k^z.
7.14

With this notation, we can calculate the electric field from the potential with

E=V,E=V,
7.15

a process we call calculating the gradient of the potential.

If we have a system with either cylindrical or spherical symmetry, we only need to use the del operator in the appropriate coordinates:

Cylindrical:=r^r+φ^1rφ+z^zCylindrical:=r^r+φ^1rφ+z^z
7.16
Spherical:=r^r+θ^1rθ+φ^1rsinθφSpherical:=r^r+θ^1rθ+φ^1rsinθφ
7.17

Example 7.17

Electric Field of a Point Charge

Calculate the electric field of a point charge from the potential.

Strategy

The potential is known to be V=kqrV=kqr, which has a spherical symmetry. Therefore, we use the spherical del operator in the formula E=VE=V.

Solution

Performing this calculation gives us
E=(r^r+θ^1rθ+φ^1rsinθφ)kqr=kq(r^r1r+θ^1rθ1r+φ^1rsinθφ1r).E=(r^r+θ^1rθ+φ^1rsinθφ)kqr=kq(r^r1r+θ^1rθ1r+φ^1rsinθφ1r).

This equation simplifies to

E=kq(r^−1r2+θ^0+φ^0)=kqr2r^E=kq(r^−1r2+θ^0+φ^0)=kqr2r^

as expected.

Significance

We not only obtained the equation for the electric field of a point particle that we’ve seen before, we also have a demonstration that EE points in the direction of decreasing potential, as shown in Figure 7.28.
The figure shows a charge Q and radially outward electric field vectors from Q.
Figure 7.28 Electric field vectors inside and outside a uniformly charged sphere.

Example 7.18

Electric Field of a Ring of Charge

Use the potential found in Example 7.14 to calculate the electric field along the axis of a ring of charge (Figure 7.29).
The figure shows a ring of charge located on the xy-plane with its center at the origin. Point P is located on the z-axis at distance z away from the origin.
Figure 7.29 We want to calculate the electric field from the electric potential due to a ring charge.

Strategy

In this case, we are only interested in one dimension, the z-axis. Therefore, we use Ez=VzEz=Vz

with the potential V=keqtotz2+R2V=keqtotz2+R2 found previously.

Solution

Taking the derivative of the potential yields
Ez=zkeqtotz2+R2=keqtotz(z2+R2)3/2.Ez=zkeqtotz2+R2=keqtotz(z2+R2)3/2.

Significance

Again, this matches the equation for the electric field found previously. It also demonstrates a system in which using the full del operator is not necessary.

Check Your Understanding 7.11

Which coordinate system would you use to calculate the electric field of a dipole?

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-2/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-2/pages/1-introduction
Citation information

© Jul 23, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.