Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
University Physics Volume 2

12.1 The Biot-Savart Law

University Physics Volume 212.1 The Biot-Savart Law

Learning Objectives

By the end of this section, you will be able to:

  • Explain how to derive a magnetic field from an arbitrary current in a line segment
  • Calculate magnetic field from the Biot-Savart law in specific geometries, such as a current in a line and a current in a circular arc

We have seen that mass produces a gravitational field and also interacts with that field. Charge produces an electric field and also interacts with that field. Since moving charge (that is, current) interacts with a magnetic field, we might expect that it also creates that field—and it does.

The equation used to calculate the magnetic field produced by a current is known as the Biot-Savart law. It is an empirical law named in honor of two scientists who investigated the interaction between a straight, current-carrying wire and a permanent magnet. This law enables us to calculate the magnitude and direction of the magnetic field produced by a current in a wire. The Biot-Savart law states that at any point P (Figure 12.2), the magnetic field dBdB due to an element dldl of a current-carrying wire is given by

dB=μ04πIdl×r^r2.dB=μ04πIdl×r^r2.
12.1
This figure demonstrates Biot-Savart Law. A current dI flows through a magnetic wire. A point P is located at the distance r from the wire. A vector r to the point P forms an angle theta with the wire. Magnetic field dB exists in the point P.
Figure 12.2 A current element IdlIdl produces a magnetic field at point P given by the Biot-Savart law.

The constant μ0μ0 is known as the permeability of free space and is exactly

μ0=4π×10−7Tm/Aμ0=4π×10−7Tm/A
12.2

in the SI system. The infinitesimal wire segment dldl is in the same direction as the current I (assumed positive), r is the distance from dldl to P and r^r^ is a unit vector that points from dldl to P, as shown in the figure.

The direction of dBdB is determined by applying the right-hand rule to the vector product dl×r^.dl×r^. The magnitude of dBdB is

dB=μ04πIdlsinθr2dB=μ04πIdlsinθr2
12.3

where θθ is the angle between dldl and r^.r^. Notice that if θ=0,θ=0, then dB=0.dB=0. The field produced by a current element IdlIdl has no component parallel to dl.dl.

The magnetic field due to a finite length of current-carrying wire is found by integrating Equation 12.3 along the wire, giving us the usual form of the Biot-Savart law.

Biot-Savart law

The magnetic field BB due to an element dldl of a current-carrying wire is given by

B=μ04πwireIdl×r^r2.B=μ04πwireIdl×r^r2.
12.4

Since this is a vector integral, contributions from different current elements may not point in the same direction. Consequently, the integral is often difficult to evaluate, even for fairly simple geometries. The following strategy may be helpful.

Problem-Solving Strategy

Solving Biot-Savart Problems

To solve Biot-Savart law problems, the following steps are helpful:

  1. Identify that the Biot-Savart law is the chosen method to solve the given problem. If there is symmetry in the problem comparing BB and dl,dl, Ampère’s law may be the preferred method to solve the question, which will be discussed in Ampère’s Law.
  2. Draw the current element length dldl and the unit vector r^,r^, noting that dldl points in the direction of the current and r^r^ points from the current element toward the point where the field is desired.
  3. Calculate the cross product dl×r^.dl×r^. The resultant vector gives the direction of the magnetic field according to the Biot-Savart law.
  4. Use Equation 12.4 and substitute all given quantities into the expression to solve for the magnetic field. Note all variables that remain constant over the entire length of the wire may be factored out of the integration.
  5. Use the right-hand rule to verify the direction of the magnetic field produced from the current or to write down the direction of the magnetic field if only the magnitude was solved for in the previous part.

Example 12.1

Calculating Magnetic Fields of Short Current Segments

A short wire of length 1.0 cm carries a current of 2.0 A in the vertical direction (Figure 12.3). The rest of the wire is shielded so it does not add to the magnetic field produced by the wire. Calculate the magnetic field at point P, which is 1 meter from the wire in the x-direction.
This figure shows a wire I with a short unshielded piece dI that carries current. Point P is located at the distance x from the wire. A vector to the point P from dI forms an angle theta with the wire. The length of the vector is the square root of the sums of squares of x and I.
Figure 12.3 A small line segment carries a current I in the vertical direction. What is the magnetic field at a distance x from the segment?

Strategy

We can determine the magnetic field at point P using the Biot-Savart law. Since the current segment is much smaller than the distance x, we can drop the integral from the expression. The integration is converted back into a summation, but only for small dl, which we now write as Δl.Δl. Another way to think about it is that each of the radius values is nearly the same, no matter where the current element is on the line segment, if ΔlΔl is small compared to x. The angle θθ is calculated using a tangent function. Using the numbers given, we can calculate the magnetic field at P.

Solution

The angle between ΔlΔl and r^r^ is calculated from trigonometry, knowing the distances l and x from the problem:
θ=tan−1(1m0.01m)=89.4°.θ=tan−1(1m0.01m)=89.4°.

The magnetic field at point P is calculated by the Biot-Savart law:

B=μ04πIΔlsinθr2=(1×10−7Tm/A)(2A(0.01m)sin(89.4°)(1m)2)=2.0×10−9T.B=μ04πIΔlsinθr2=(1×10−7Tm/A)(2A(0.01m)sin(89.4°)(1m)2)=2.0×10−9T.

From the right-hand rule and the Biot-Savart law, the field is directed into the page.

Significance

This approximation is only good if the length of the line segment is very small compared to the distance from the current element to the point. If not, the integral form of the Biot-Savart law must be used over the entire line segment to calculate the magnetic field.

Check Your Understanding 12.1

Using Example 12.1, at what distance would P have to be to measure a magnetic field half of the given answer?

Example 12.2

Calculating Magnetic Field of a Circular Arc of Wire

A wire carries a current I in a circular arc with radius R swept through an arbitrary angle θθ (Figure 12.4). Calculate the magnetic field at the center of this arc at point P.
This figure shows a piece of wire in the shape of a circular arc with radius R swept through an arbitrary angle theta. Wire carries a current dI. Point P is located at the center. A vector r to the point P is perpendicular to the vector dI.
Figure 12.4 A wire segment carrying a current I. The path dldl and radial direction r^r^ are indicated.

Strategy

We can determine the magnetic field at point P using the Biot-Savart law. The radial and path length directions are always at a right angle, so the cross product turns into multiplication. We also know that the distance along the path dl is related to the radius times the angle θθ (in radians). Then we can pull all constants out of the integration and solve for the magnetic field.

Solution

The Biot-Savart law starts with the following equation:
B=μ04πwireIdl×r^r2.B=μ04πwireIdl×r^r2.

As we integrate along the arc, all the contributions to the magnetic field are in the same direction (out of the page), so we can work with the magnitude of the field. The cross product turns into multiplication because the path dl and the radial direction are perpendicular. We can also substitute the arc length formula, dl=rdθdl=rdθ:

B=μ04πwireIrdθr2.B=μ04πwireIrdθr2.

The current and radius can be pulled out of the integral because they are the same regardless of where we are on the path. This leaves only the integral over the angle,

B=μ0I4πrwiredθ.B=μ0I4πrwiredθ.

The angle varies on the wire from 0 to θθ; hence, the result is

B=μ0Iθ4πr.B=μ0Iθ4πr.

Significance

The direction of the magnetic field at point P is determined by the right-hand rule, as shown in the previous chapter. If there are other wires in the diagram along with the arc, and you are asked to find the net magnetic field, find each contribution from a wire or arc and add the results by superposition of vectors. Make sure to pay attention to the direction of each contribution. Also note that in a symmetric situation, like a straight or circular wire, contributions from opposite sides of point P cancel each other.

Check Your Understanding 12.2

The wire loop forms a full circle of radius R and current I. What is the magnitude of the magnetic field at the center?

Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-2/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-2/pages/1-introduction
Citation information

© Jan 19, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.