Skip to Content
OpenStax Logo
Buy book
  1. Preface
  2. Unit 1. Thermodynamics
    1. 1 Temperature and Heat
      1. Introduction
      2. 1.1 Temperature and Thermal Equilibrium
      3. 1.2 Thermometers and Temperature Scales
      4. 1.3 Thermal Expansion
      5. 1.4 Heat Transfer, Specific Heat, and Calorimetry
      6. 1.5 Phase Changes
      7. 1.6 Mechanisms of Heat Transfer
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    2. 2 The Kinetic Theory of Gases
      1. Introduction
      2. 2.1 Molecular Model of an Ideal Gas
      3. 2.2 Pressure, Temperature, and RMS Speed
      4. 2.3 Heat Capacity and Equipartition of Energy
      5. 2.4 Distribution of Molecular Speeds
      6. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    3. 3 The First Law of Thermodynamics
      1. Introduction
      2. 3.1 Thermodynamic Systems
      3. 3.2 Work, Heat, and Internal Energy
      4. 3.3 First Law of Thermodynamics
      5. 3.4 Thermodynamic Processes
      6. 3.5 Heat Capacities of an Ideal Gas
      7. 3.6 Adiabatic Processes for an Ideal Gas
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    4. 4 The Second Law of Thermodynamics
      1. Introduction
      2. 4.1 Reversible and Irreversible Processes
      3. 4.2 Heat Engines
      4. 4.3 Refrigerators and Heat Pumps
      5. 4.4 Statements of the Second Law of Thermodynamics
      6. 4.5 The Carnot Cycle
      7. 4.6 Entropy
      8. 4.7 Entropy on a Microscopic Scale
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
  3. Unit 2. Electricity and Magnetism
    1. 5 Electric Charges and Fields
      1. Introduction
      2. 5.1 Electric Charge
      3. 5.2 Conductors, Insulators, and Charging by Induction
      4. 5.3 Coulomb's Law
      5. 5.4 Electric Field
      6. 5.5 Calculating Electric Fields of Charge Distributions
      7. 5.6 Electric Field Lines
      8. 5.7 Electric Dipoles
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
    2. 6 Gauss's Law
      1. Introduction
      2. 6.1 Electric Flux
      3. 6.2 Explaining Gauss’s Law
      4. 6.3 Applying Gauss’s Law
      5. 6.4 Conductors in Electrostatic Equilibrium
      6. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    3. 7 Electric Potential
      1. Introduction
      2. 7.1 Electric Potential Energy
      3. 7.2 Electric Potential and Potential Difference
      4. 7.3 Calculations of Electric Potential
      5. 7.4 Determining Field from Potential
      6. 7.5 Equipotential Surfaces and Conductors
      7. 7.6 Applications of Electrostatics
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    4. 8 Capacitance
      1. Introduction
      2. 8.1 Capacitors and Capacitance
      3. 8.2 Capacitors in Series and in Parallel
      4. 8.3 Energy Stored in a Capacitor
      5. 8.4 Capacitor with a Dielectric
      6. 8.5 Molecular Model of a Dielectric
      7. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    5. 9 Current and Resistance
      1. Introduction
      2. 9.1 Electrical Current
      3. 9.2 Model of Conduction in Metals
      4. 9.3 Resistivity and Resistance
      5. 9.4 Ohm's Law
      6. 9.5 Electrical Energy and Power
      7. 9.6 Superconductors
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    6. 10 Direct-Current Circuits
      1. Introduction
      2. 10.1 Electromotive Force
      3. 10.2 Resistors in Series and Parallel
      4. 10.3 Kirchhoff's Rules
      5. 10.4 Electrical Measuring Instruments
      6. 10.5 RC Circuits
      7. 10.6 Household Wiring and Electrical Safety
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    7. 11 Magnetic Forces and Fields
      1. Introduction
      2. 11.1 Magnetism and Its Historical Discoveries
      3. 11.2 Magnetic Fields and Lines
      4. 11.3 Motion of a Charged Particle in a Magnetic Field
      5. 11.4 Magnetic Force on a Current-Carrying Conductor
      6. 11.5 Force and Torque on a Current Loop
      7. 11.6 The Hall Effect
      8. 11.7 Applications of Magnetic Forces and Fields
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    8. 12 Sources of Magnetic Fields
      1. Introduction
      2. 12.1 The Biot-Savart Law
      3. 12.2 Magnetic Field Due to a Thin Straight Wire
      4. 12.3 Magnetic Force between Two Parallel Currents
      5. 12.4 Magnetic Field of a Current Loop
      6. 12.5 Ampère’s Law
      7. 12.6 Solenoids and Toroids
      8. 12.7 Magnetism in Matter
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    9. 13 Electromagnetic Induction
      1. Introduction
      2. 13.1 Faraday’s Law
      3. 13.2 Lenz's Law
      4. 13.3 Motional Emf
      5. 13.4 Induced Electric Fields
      6. 13.5 Eddy Currents
      7. 13.6 Electric Generators and Back Emf
      8. 13.7 Applications of Electromagnetic Induction
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    10. 14 Inductance
      1. Introduction
      2. 14.1 Mutual Inductance
      3. 14.2 Self-Inductance and Inductors
      4. 14.3 Energy in a Magnetic Field
      5. 14.4 RL Circuits
      6. 14.5 Oscillations in an LC Circuit
      7. 14.6 RLC Series Circuits
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    11. 15 Alternating-Current Circuits
      1. Introduction
      2. 15.1 AC Sources
      3. 15.2 Simple AC Circuits
      4. 15.3 RLC Series Circuits with AC
      5. 15.4 Power in an AC Circuit
      6. 15.5 Resonance in an AC Circuit
      7. 15.6 Transformers
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    12. 16 Electromagnetic Waves
      1. Introduction
      2. 16.1 Maxwell’s Equations and Electromagnetic Waves
      3. 16.2 Plane Electromagnetic Waves
      4. 16.3 Energy Carried by Electromagnetic Waves
      5. 16.4 Momentum and Radiation Pressure
      6. 16.5 The Electromagnetic Spectrum
      7. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
  4. A | Units
  5. B | Conversion Factors
  6. C | Fundamental Constants
  7. D | Astronomical Data
  8. E | Mathematical Formulas
  9. F | Chemistry
  10. G | The Greek Alphabet
  11. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
    11. Chapter 11
    12. Chapter 12
    13. Chapter 13
    14. Chapter 14
    15. Chapter 15
    16. Chapter 16
  12. Index

Problems

12.1 The Biot-Savart Law

16.

A 10-A current flows through the wire shown. What is the magnitude of the magnetic field due to a 0.5-mm segment of wire as measured at (a) point A and (b) point B?

This figure shows a piece of wire. Point A is located 3 centimeters above the 0.5 mm segment of wire. Point B is located 4 centimeters to the right of point A.
17.

Ten amps flow through a square loop where each side is 20 cm in length. At each corner of the loop is a 0.01-cm segment that connects the longer wires as shown. Calculate the magnitude of the magnetic field at the center of the loop.

A square loop is shown with rounded corners. There are no markings.
18.

What is the magnetic field at P due to the current I in the wire shown?

This figure shows a current loop consisting of two concentric circular arcs and two parallel radial lines. Outer arc is located at the distance b from the center; inner arc is located at the distance a from the center.
19.

The accompanying figure shows a current loop consisting of two concentric circular arcs and two perpendicular radial lines. Determine the magnetic field at point P.

This figure shows a current loop consisting of two concentric circular arcs and two perpendicular radial lines. Outer arc is located at the distance b from the center; inner arc is located at the distance a from the center.
20.

Find the magnetic field at the center C of the rectangular loop of wire shown in the accompanying figure.

This figure shows a rectangular current loop. The length of the short side is b; the length of the long side is a. Point C is a center of the loop.
21.

Two long wires, one of which has a semicircular bend of radius R, are positioned as shown in the accompanying figure. If both wires carry a current I, how far apart must their parallel sections be so that the net magnetic field at P is zero? Does the current in the straight wire flow up or down?

This figure shows two parallel long wires located at a distance a from each other. One of the wires has a semicircular bend of radius R.

12.2 Magnetic Field Due to a Thin Straight Wire

22.

A typical current in a lightning bolt is 104104 A. Estimate the magnetic field 1 m from the bolt.

23.

The magnitude of the magnetic field 50 cm from a long, thin, straight wire is 8.0μT.8.0μT. What is the current through the long wire?

24.

A transmission line strung 7.0 m above the ground carries a current of 500 A. What is the magnetic field on the ground directly below the wire? Compare your answer with the magnetic field of Earth.

25.

A long, straight, horizontal wire carries a left-to-right current of 20 A. If the wire is placed in a uniform magnetic field of magnitude 4.0×10−5T4.0×10−5T that is directed vertically downward, what is the resultant magnitude of the magnetic field 20 cm above the wire? 20 cm below the wire?

26.

The two long, parallel wires shown in the accompanying figure carry currents in the same direction. If I1=10 AI1=10 A and I2=20A,I2=20A, what is the magnetic field at point P?

27.

The accompanying figure shows two long, straight, horizontal wires that are parallel and a distance 2a apart. If both wires carry current I in the same direction, (a) what is the magnetic field at P1?P1? (b) P2?P2?

Figure shows two long parallel wires that are distance 2a apart. Current flows through the wires in the same direction. Point P1 is located between the wires at a distance a from each. Point P2 is located at a distance 2 a outside the wires.
28.

Repeat the calculations of the preceding problem with the direction of the current in the lower wire reversed.

29.

Consider the area between the wires of the preceding problem. At what distance from the top wire is the net magnetic field a minimum? Assume that the currents are equal and flow in opposite directions.

12.3 Magnetic Force between Two Parallel Currents

30.

Two long, straight wires are parallel and 25 cm apart. (a) If each wire carries a current of 50 A in the same direction, what is the magnetic force per meter exerted on each wire? (b) Does the force pull the wires together or push them apart? (c) What happens if the currents flow in opposite directions?

31.

Two long, straight wires are parallel and 10 cm apart. One carries a current of 2.0 A, the other a current of 5.0 A. (a) If the two currents flow in opposite directions, what is the magnitude and direction of the force per unit length of one wire on the other? (b) What is the magnitude and direction of the force per unit length if the currents flow in the same direction?

32.

Two long, parallel wires are hung by cords of length 5.0 cm, as shown in the accompanying figure. Each wire has a mass per unit length of 30 g/m, and they carry the same current in opposite directions. What is the current if the cords hang at 6.0°6.0° with respect to the vertical?

Figure shows two parallel wires with current flowing in opposite directions that are hung by cords suspended from hooks.
33.

A circuit with current I has two long parallel wire sections that carry current in opposite directions. Find magnetic field at a point P near these wires that is a distance a from one wire and b from the other wire as shown in the figure.

Figure shows two current carrying wires. One carries current out of the page; another carries current into the page. Wires form vertices of a right triangle. Point P is the third vertex and is located at a distance b from one wire and distance a from another wire. Distance b is a leg; distance a is a hypotenuse.
34.

The infinite, straight wire shown in the accompanying figure carries a current I1.I1. The rectangular loop, whose long sides are parallel to the wire, carries a current I2.I2. What are the magnitude and direction of the force on the rectangular loop due to the magnetic field of the wire?

Figure shows a wire that carries the current I1 and a rectangular loop with long sides that are parallel to the wire and carry a current I2. Distance between the wire and the loop is b. Length of the side of the long side of the loop is a, distance of the short side of the loop is b.

12.4 Magnetic Field of a Current Loop

35.

When the current through a circular loop is 6.0 A, the magnetic field at its center is 2.0×10−4T.2.0×10−4T. What is the radius of the loop?

36.

How many turns must be wound on a flat, circular coil of radius 20 cm in order to produce a magnetic field of magnitude 4.0×10−5T4.0×10−5T at the center of the coil when the current through it is 0.85 A?

37.

A flat, circular loop has 20 turns. The radius of the loop is 10.0 cm and the current through the wire is 0.50 A. Determine the magnitude of the magnetic field at the center of the loop.

38.

A circular loop of radius R carries a current I. At what distance along the axis of the loop is the magnetic field one-half its value at the center of the loop?

39.

Two flat, circular coils, each with a radius R and wound with N turns, are mounted along the same axis so that they are parallel a distance d apart. What is the magnetic field at the midpoint of the common axis if a current I flows in the same direction through each coil?

40.

For the coils in the preceding problem, what is the magnetic field at the center of either coil?

12.5 Ampère’s Law

41.

A current I flows around the rectangular loop shown in the accompanying figure. Evaluate B·dlB·dl for the paths A, B, C, and D.

Figure shows rectangular loop carrying current I. Paths A and C intersect with the short sides of the loop. Path B intersects with the two long sides of the loop. Path D intersects both with the short and the long sides of the loop.
42.

Evaluate B·dlB·dl for each of the cases shown in the accompanying figure.

Figure A shows a wire inside the loop that carries current of two Amperes upward through the loop. Figure B shows three wires inside the loop that carry current of five Amperes, two Amperes, and six Amperes. First and third wires carry current upward through the loop. Second wire carries current downward through the loop. Figure C shows two wires outside the loop that carry current of three Amperes and two Amperes upward through the loop. Figure D shows three wires carrying current of three Amperes, two Amperes, and four Amperes. First wire is outside the loop, second and third wires are inside the loop. First and third wires carry current downward through the loop. Second wire carries current upward through the loop. Figure D shows four wires carrying currents of four Amperes, three Amperes, two Amperes, and two Amperes. First and fourth wires are outside the loop. Second and third wires are inside the loop. First, second, and third wires carry current upward through the loop. Fourth wire carries current downward through the loop.
43.

The coil whose lengthwise cross section is shown in the accompanying figure carries a current I and has N evenly spaced turns distributed along the length l. Evaluate B·dlB·dl for the paths indicated.

Figure shows the lengthwise cross section of a coil. Path A intersects three coils carrying current from the plane of the paper. Path B intersects four coils with two carrying current from the plane of the paper and two carrying current into the plane of the paper. Path C intersects seven coils carrying current into the plane of the paper. Path D intersects two coils carrying current into the plane of the paper.
44.

A superconducting wire of diameter 0.25 cm carries a current of 1000 A. What is the magnetic field just outside the wire?

45.

A long, straight wire of radius R carries a current I that is distributed uniformly over the cross-section of the wire. At what distance from the axis of the wire is the magnitude of the magnetic field a maximum?

46.

The accompanying figure shows a cross-section of a long, hollow, cylindrical conductor of inner radius r1=3.0 cmr1=3.0 cm and outer radius r2=5.0 cm.r2=5.0 cm. A 50-A current distributed uniformly over the cross-section flows into the page. Calculate the magnetic field at r=2.0 cm,r=4.0cm,andr=6.0 cm.r=2.0 cm,r=4.0cm,andr=6.0 cm.

Figure shows a cross-section of a long, hollow, cylindrical conductor with an inner radius of three centimeters and an outer radius of five centimeters.
47.

A long, solid, cylindrical conductor of radius 3.0 cm carries a current of 50 A distributed uniformly over its cross-section. Plot the magnetic field as a function of the radial distance r from the center of the conductor.

48.

A portion of a long, cylindrical coaxial cable is shown in the accompanying figure. A current I flows down the center conductor, and this current is returned in the outer conductor. Determine the magnetic field in the regions (a) rr1,rr1, (b) r2rr1,r2rr1, (c) r3rr2,r3rr2, and (d) rr3.rr3. Assume that the current is distributed uniformly over the cross sections of the two parts of the cable.

Figure shows a long, cylindrical coaxial cable. Radius of the inner center conductor is r1. Distance from the center to the inner side of the shield is r2. Distance from the center to the outer side of the shield is r3.

12.6 Solenoids and Toroids

49.

A solenoid is wound with 2000 turns per meter. When the current is 5.2 A, what is the magnetic field within the solenoid?

50.

A solenoid has 12 turns per centimeter. What current will produce a magnetic field of 2.0×10−2T2.0×10−2T within the solenoid?

51.

If a current is 2.0 A, how many turns per centimeter must be wound on a solenoid in order to produce a magnetic field of 2.0×10−3T2.0×10−3T within it?

52.

A solenoid is 40 cm long, has a diameter of 3.0 cm, and is wound with 500 turns. If the current through the windings is 4.0 A, what is the magnetic field at a point on the axis of the solenoid that is (a) at the center of the solenoid, (b) 10.0 cm from one end of the solenoid, and (c) 5.0 cm from one end of the solenoid? (d) Compare these answers with the infinite-solenoid case.

Figure A is a cross section of a solenoid that shows three windings. The distance from the center to the winding is 1.5 centimeters. The distance between the windings is 20 centimeters. The point is located at the center axis of the solenoid, opposite to the second winding. Figure B is a cross section of a solenoid that shows three windings. The distance from the center to the winding is 1.5 centimeters. The distance between the windings is 20 centimeters. The point is located at the center axis of the solenoid, between the first and the second winding. Figure C is a cross section of a solenoid that shows three windings. The distance from the center to the winding is 1.5 centimeters. The distance between the windings is 20 centimeters. The point is located at the center axis of the solenoid, five centimeters below the first winding.
53.

Determine the magnetic field on the central axis at the opening of a semi-infinite solenoid. (That is, take the opening to be at x=0x=0 and the other end to be at
x=.x=.)

54.

By how much is the approximation B=μ0nIB=μ0nI in error at the center of a solenoid that is 15.0 cm long, has a diameter of 4.0 cm, is wrapped with n turns per meter, and carries a current I?

55.

A solenoid with 25 turns per centimeter carries a current I. An electron moves within the solenoid in a circle that has a radius of 2.0 cm and is perpendicular to the axis of the solenoid. If the speed of the electron is 2.0×105m/s,2.0×105m/s, what is I?

56.

A toroid has 250 turns of wire and carries a current of 20 A. Its inner and outer radii are 8.0 and 9.0 cm. What are the values of its magnetic field at r=8.1,8.5,r=8.1,8.5, and 8.9cm?8.9cm?

57.

A toroid with a square cross section 3.0 cm ×× 3.0 cm has an inner radius of 25.0 cm. It is wound with 500 turns of wire, and it carries a current of 2.0 A. What is the strength of the magnetic field at the center of the square cross section?

12.7 Magnetism in Matter

58.

The magnetic field in the core of an air-filled solenoid is 1.50 T. By how much will this magnetic field decrease if the air is pumped out of the core while the current is held constant?

59.

A solenoid has a ferromagnetic core, n = 1000 turns per meter, and I = 5.0 A. If B inside the solenoid is 2.0 T, what is χχ for the core material?

60.

A 20-A current flows through a solenoid with 2000 turns per meter. What is the magnetic field inside the solenoid if its core is (a) a vacuum and (b) filled with liquid oxygen at 90 K?

61.

The magnetic dipole moment of the iron atom is about 2.1×10−23A·m2.2.1×10−23A·m2. (a) Calculate the maximum magnetic dipole moment of a domain consisting of 10191019 iron atoms. (b) What current would have to flow through a single circular loop of wire of diameter 1.0 cm to produce this magnetic dipole moment?

62.

Suppose you wish to produce a 1.2-T magnetic field in a toroid with an iron core for which χ=4.0×103.χ=4.0×103. The toroid has a mean radius of 15 cm and is wound with 500 turns. What current is required?

63.

A current of 1.5 A flows through the windings of a large, thin toroid with 200 turns per meter and a radius of 1 meter. If the toroid is filled with iron for which χ=3.0×103,χ=3.0×103, what is the magnetic field within it?

64.

A solenoid with an iron core is 25 cm long and is wrapped with 100 turns of wire. When the current through the solenoid is 10 A, the magnetic field inside it is 2.0 T. For this current, what is the permeability of the iron? If the current is turned off and then restored to 10 A, will the magnetic field necessarily return to 2.0 T?

Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-2/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-2/pages/1-introduction
Citation information

© Oct 6, 2016 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.