Skip to Content
OpenStax Logo
University Physics Volume 2

14.3 Energy in a Magnetic Field

University Physics Volume 214.3 Energy in a Magnetic Field
Buy book
  1. Preface
  2. Unit 1. Thermodynamics
    1. 1 Temperature and Heat
      1. Introduction
      2. 1.1 Temperature and Thermal Equilibrium
      3. 1.2 Thermometers and Temperature Scales
      4. 1.3 Thermal Expansion
      5. 1.4 Heat Transfer, Specific Heat, and Calorimetry
      6. 1.5 Phase Changes
      7. 1.6 Mechanisms of Heat Transfer
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    2. 2 The Kinetic Theory of Gases
      1. Introduction
      2. 2.1 Molecular Model of an Ideal Gas
      3. 2.2 Pressure, Temperature, and RMS Speed
      4. 2.3 Heat Capacity and Equipartition of Energy
      5. 2.4 Distribution of Molecular Speeds
      6. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    3. 3 The First Law of Thermodynamics
      1. Introduction
      2. 3.1 Thermodynamic Systems
      3. 3.2 Work, Heat, and Internal Energy
      4. 3.3 First Law of Thermodynamics
      5. 3.4 Thermodynamic Processes
      6. 3.5 Heat Capacities of an Ideal Gas
      7. 3.6 Adiabatic Processes for an Ideal Gas
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    4. 4 The Second Law of Thermodynamics
      1. Introduction
      2. 4.1 Reversible and Irreversible Processes
      3. 4.2 Heat Engines
      4. 4.3 Refrigerators and Heat Pumps
      5. 4.4 Statements of the Second Law of Thermodynamics
      6. 4.5 The Carnot Cycle
      7. 4.6 Entropy
      8. 4.7 Entropy on a Microscopic Scale
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
  3. Unit 2. Electricity and Magnetism
    1. 5 Electric Charges and Fields
      1. Introduction
      2. 5.1 Electric Charge
      3. 5.2 Conductors, Insulators, and Charging by Induction
      4. 5.3 Coulomb's Law
      5. 5.4 Electric Field
      6. 5.5 Calculating Electric Fields of Charge Distributions
      7. 5.6 Electric Field Lines
      8. 5.7 Electric Dipoles
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
    2. 6 Gauss's Law
      1. Introduction
      2. 6.1 Electric Flux
      3. 6.2 Explaining Gauss’s Law
      4. 6.3 Applying Gauss’s Law
      5. 6.4 Conductors in Electrostatic Equilibrium
      6. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    3. 7 Electric Potential
      1. Introduction
      2. 7.1 Electric Potential Energy
      3. 7.2 Electric Potential and Potential Difference
      4. 7.3 Calculations of Electric Potential
      5. 7.4 Determining Field from Potential
      6. 7.5 Equipotential Surfaces and Conductors
      7. 7.6 Applications of Electrostatics
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    4. 8 Capacitance
      1. Introduction
      2. 8.1 Capacitors and Capacitance
      3. 8.2 Capacitors in Series and in Parallel
      4. 8.3 Energy Stored in a Capacitor
      5. 8.4 Capacitor with a Dielectric
      6. 8.5 Molecular Model of a Dielectric
      7. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    5. 9 Current and Resistance
      1. Introduction
      2. 9.1 Electrical Current
      3. 9.2 Model of Conduction in Metals
      4. 9.3 Resistivity and Resistance
      5. 9.4 Ohm's Law
      6. 9.5 Electrical Energy and Power
      7. 9.6 Superconductors
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    6. 10 Direct-Current Circuits
      1. Introduction
      2. 10.1 Electromotive Force
      3. 10.2 Resistors in Series and Parallel
      4. 10.3 Kirchhoff's Rules
      5. 10.4 Electrical Measuring Instruments
      6. 10.5 RC Circuits
      7. 10.6 Household Wiring and Electrical Safety
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    7. 11 Magnetic Forces and Fields
      1. Introduction
      2. 11.1 Magnetism and Its Historical Discoveries
      3. 11.2 Magnetic Fields and Lines
      4. 11.3 Motion of a Charged Particle in a Magnetic Field
      5. 11.4 Magnetic Force on a Current-Carrying Conductor
      6. 11.5 Force and Torque on a Current Loop
      7. 11.6 The Hall Effect
      8. 11.7 Applications of Magnetic Forces and Fields
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    8. 12 Sources of Magnetic Fields
      1. Introduction
      2. 12.1 The Biot-Savart Law
      3. 12.2 Magnetic Field Due to a Thin Straight Wire
      4. 12.3 Magnetic Force between Two Parallel Currents
      5. 12.4 Magnetic Field of a Current Loop
      6. 12.5 Ampère’s Law
      7. 12.6 Solenoids and Toroids
      8. 12.7 Magnetism in Matter
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    9. 13 Electromagnetic Induction
      1. Introduction
      2. 13.1 Faraday’s Law
      3. 13.2 Lenz's Law
      4. 13.3 Motional Emf
      5. 13.4 Induced Electric Fields
      6. 13.5 Eddy Currents
      7. 13.6 Electric Generators and Back Emf
      8. 13.7 Applications of Electromagnetic Induction
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    10. 14 Inductance
      1. Introduction
      2. 14.1 Mutual Inductance
      3. 14.2 Self-Inductance and Inductors
      4. 14.3 Energy in a Magnetic Field
      5. 14.4 RL Circuits
      6. 14.5 Oscillations in an LC Circuit
      7. 14.6 RLC Series Circuits
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    11. 15 Alternating-Current Circuits
      1. Introduction
      2. 15.1 AC Sources
      3. 15.2 Simple AC Circuits
      4. 15.3 RLC Series Circuits with AC
      5. 15.4 Power in an AC Circuit
      6. 15.5 Resonance in an AC Circuit
      7. 15.6 Transformers
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    12. 16 Electromagnetic Waves
      1. Introduction
      2. 16.1 Maxwell’s Equations and Electromagnetic Waves
      3. 16.2 Plane Electromagnetic Waves
      4. 16.3 Energy Carried by Electromagnetic Waves
      5. 16.4 Momentum and Radiation Pressure
      6. 16.5 The Electromagnetic Spectrum
      7. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
  4. A | Units
  5. B | Conversion Factors
  6. C | Fundamental Constants
  7. D | Astronomical Data
  8. E | Mathematical Formulas
  9. F | Chemistry
  10. G | The Greek Alphabet
  11. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
    11. Chapter 11
    12. Chapter 12
    13. Chapter 13
    14. Chapter 14
    15. Chapter 15
    16. Chapter 16
  12. Index

Learning Objectives

By the end of this section, you will be able to:
  • Explain how energy can be stored in a magnetic field
  • Derive the equation for energy stored in a coaxial cable given the magnetic energy density

The energy of a capacitor is stored in the electric field between its plates. Similarly, an inductor has the capability to store energy, but in its magnetic field. This energy can be found by integrating the magnetic energy density,

um=B22μ0um=B22μ0
(14.18)

over the appropriate volume. To understand where this formula comes from, let’s consider the long, cylindrical solenoid of the previous section. Again using the infinite solenoid approximation, we can assume that the magnetic field is essentially constant and given by B=μ0nIB=μ0nI everywhere inside the solenoid. Thus, the energy stored in a solenoid or the magnetic energy density times volume is equivalent to

U=um(V)=(μ0nI)22μ0(Al)=12(μ0n2Al)I2.U=um(V)=(μ0nI)22μ0(Al)=12(μ0n2Al)I2.
(14.19)

With the substitution of Equation 14.14, this becomes

U=12LI2.U=12LI2.
(14.20)

Although derived for a special case, this equation gives the energy stored in the magnetic field of any inductor. We can see this by considering an arbitrary inductor through which a changing current is passing. At any instant, the magnitude of the induced emf is ε=Ldi/dt,ε=Ldi/dt, so the power absorbed by the inductor is

P=εi=Ldidti.P=εi=Ldidti.
(14.21)

The total energy stored in the magnetic field when the current increases from 0 to I in a time interval from 0 to t can be determined by integrating this expression:

U=0tPdt=0tLdidtidt=L0lidi=12LI2.U=0tPdt=0tLdidtidt=L0lidi=12LI2.
(14.22)

Example 14.3

Self-Inductance of a Coaxial Cable Figure 14.11 shows two long, concentric cylindrical shells of radii R1R1 and R2.R2. As discussed in Capacitance on capacitance, this configuration is a simplified representation of a coaxial cable. The capacitance per unit length of the cable has already been calculated. Now (a) determine the magnetic energy stored per unit length of the coaxial cable and (b) use this result to find the self-inductance per unit length of the cable.

Figure a shows two concentrically arranged hollow cylinders. The radius of the inner one is R1 and that of the outer one is R2. Figure 2 shows a dotted circle with radius r in between the two cylinders. Figure c shows a cylinder of length and radius r in between the two cylinders. Its thickness is dr.
Figure 14.11 (a) A coaxial cable is represented here by two hollow, concentric cylindrical conductors along which electric current flows in opposite directions. (b) The magnetic field between the conductors can be found by applying Ampère’s law to the dashed path. (c) The cylindrical shell is used to find the magnetic energy stored in a length l of the cable.

Strategy The magnetic field both inside and outside the coaxial cable is determined by Ampère’s law. Based on this magnetic field, we can use Equation 14.22 to calculate the energy density of the magnetic field. The magnetic energy is calculated by an integral of the magnetic energy density times the differential volume over the cylindrical shell. After the integration is carried out, we have a closed-form solution for part (a). The self-inductance per unit length is determined based on this result and Equation 14.22.

Solution

  1. We determine the magnetic field between the conductors by applying Ampère’s law to the dashed circular path shown in Figure 14.11(b). Because of the cylindrical symmetry, BB is constant along the path, and
    B·dl=B(2πr)=μ0I.B·dl=B(2πr)=μ0I.

    This gives us
    B=μ0I2πr.B=μ0I2πr.

    In the region outside the cable, a similar application of Ampère’s law shows that B=0B=0, since no net current crosses the area bounded by a circular path where r>R2.r>R2. This argument also holds when r<R1;r<R1; that is, in the region within the inner cylinder. All the magnetic energy of the cable is therefore stored between the two conductors. Since the energy density of the magnetic field is
    um=B22μ0um=B22μ0

    the energy stored in a cylindrical shell of inner radius r, outer radius r+dr,r+dr, and length l (see part (c) of the figure) is
    um=μ0I28π2r2.um=μ0I28π2r2.

    Thus, the total energy of the magnetic field in a length l of the cable is
    U=R1R2dU=R1R2μ0I28π2r2(2πrl)dr=μ0I2l4πlnR2R1,U=R1R2dU=R1R2μ0I28π2r2(2πrl)dr=μ0I2l4πlnR2R1,

    and the energy per unit length is (μ0I2/4π)ln(R2/R1)(μ0I2/4π)ln(R2/R1).
  2. From Equation 14.22,
    U=12LI2,U=12LI2,

    where L is the self-inductance of a length l of the coaxial cable. Equating the previous two equations, we find that the self-inductance per unit length of the cable is
    Ll=μ02πlnR2R1.Ll=μ02πlnR2R1.

Significance The inductance per unit length depends only on the inner and outer radii as seen in the result. To increase the inductance, we could either increase the outer radius (R2)(R2) or decrease the inner radius (R1)(R1). In the limit as the two radii become equal, the inductance goes to zero. In this limit, there is no coaxial cable. Also, the magnetic energy per unit length from part (a) is proportional to the square of the current.

Check Your Understanding 14.6

How much energy is stored in the inductor of Example 14.2 after the current reaches its maximum value?

Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-2/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-2/pages/1-introduction
Citation information

© Oct 6, 2016 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.