Skip to Content
OpenStax Logo
University Physics Volume 2

Challenge Problems

University Physics Volume 2Challenge Problems
Buy book
  1. Preface
  2. Unit 1. Thermodynamics
    1. 1 Temperature and Heat
      1. Introduction
      2. 1.1 Temperature and Thermal Equilibrium
      3. 1.2 Thermometers and Temperature Scales
      4. 1.3 Thermal Expansion
      5. 1.4 Heat Transfer, Specific Heat, and Calorimetry
      6. 1.5 Phase Changes
      7. 1.6 Mechanisms of Heat Transfer
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    2. 2 The Kinetic Theory of Gases
      1. Introduction
      2. 2.1 Molecular Model of an Ideal Gas
      3. 2.2 Pressure, Temperature, and RMS Speed
      4. 2.3 Heat Capacity and Equipartition of Energy
      5. 2.4 Distribution of Molecular Speeds
      6. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    3. 3 The First Law of Thermodynamics
      1. Introduction
      2. 3.1 Thermodynamic Systems
      3. 3.2 Work, Heat, and Internal Energy
      4. 3.3 First Law of Thermodynamics
      5. 3.4 Thermodynamic Processes
      6. 3.5 Heat Capacities of an Ideal Gas
      7. 3.6 Adiabatic Processes for an Ideal Gas
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    4. 4 The Second Law of Thermodynamics
      1. Introduction
      2. 4.1 Reversible and Irreversible Processes
      3. 4.2 Heat Engines
      4. 4.3 Refrigerators and Heat Pumps
      5. 4.4 Statements of the Second Law of Thermodynamics
      6. 4.5 The Carnot Cycle
      7. 4.6 Entropy
      8. 4.7 Entropy on a Microscopic Scale
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
  3. Unit 2. Electricity and Magnetism
    1. 5 Electric Charges and Fields
      1. Introduction
      2. 5.1 Electric Charge
      3. 5.2 Conductors, Insulators, and Charging by Induction
      4. 5.3 Coulomb's Law
      5. 5.4 Electric Field
      6. 5.5 Calculating Electric Fields of Charge Distributions
      7. 5.6 Electric Field Lines
      8. 5.7 Electric Dipoles
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
    2. 6 Gauss's Law
      1. Introduction
      2. 6.1 Electric Flux
      3. 6.2 Explaining Gauss’s Law
      4. 6.3 Applying Gauss’s Law
      5. 6.4 Conductors in Electrostatic Equilibrium
      6. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    3. 7 Electric Potential
      1. Introduction
      2. 7.1 Electric Potential Energy
      3. 7.2 Electric Potential and Potential Difference
      4. 7.3 Calculations of Electric Potential
      5. 7.4 Determining Field from Potential
      6. 7.5 Equipotential Surfaces and Conductors
      7. 7.6 Applications of Electrostatics
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    4. 8 Capacitance
      1. Introduction
      2. 8.1 Capacitors and Capacitance
      3. 8.2 Capacitors in Series and in Parallel
      4. 8.3 Energy Stored in a Capacitor
      5. 8.4 Capacitor with a Dielectric
      6. 8.5 Molecular Model of a Dielectric
      7. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    5. 9 Current and Resistance
      1. Introduction
      2. 9.1 Electrical Current
      3. 9.2 Model of Conduction in Metals
      4. 9.3 Resistivity and Resistance
      5. 9.4 Ohm's Law
      6. 9.5 Electrical Energy and Power
      7. 9.6 Superconductors
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    6. 10 Direct-Current Circuits
      1. Introduction
      2. 10.1 Electromotive Force
      3. 10.2 Resistors in Series and Parallel
      4. 10.3 Kirchhoff's Rules
      5. 10.4 Electrical Measuring Instruments
      6. 10.5 RC Circuits
      7. 10.6 Household Wiring and Electrical Safety
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    7. 11 Magnetic Forces and Fields
      1. Introduction
      2. 11.1 Magnetism and Its Historical Discoveries
      3. 11.2 Magnetic Fields and Lines
      4. 11.3 Motion of a Charged Particle in a Magnetic Field
      5. 11.4 Magnetic Force on a Current-Carrying Conductor
      6. 11.5 Force and Torque on a Current Loop
      7. 11.6 The Hall Effect
      8. 11.7 Applications of Magnetic Forces and Fields
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    8. 12 Sources of Magnetic Fields
      1. Introduction
      2. 12.1 The Biot-Savart Law
      3. 12.2 Magnetic Field Due to a Thin Straight Wire
      4. 12.3 Magnetic Force between Two Parallel Currents
      5. 12.4 Magnetic Field of a Current Loop
      6. 12.5 Ampère’s Law
      7. 12.6 Solenoids and Toroids
      8. 12.7 Magnetism in Matter
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    9. 13 Electromagnetic Induction
      1. Introduction
      2. 13.1 Faraday’s Law
      3. 13.2 Lenz's Law
      4. 13.3 Motional Emf
      5. 13.4 Induced Electric Fields
      6. 13.5 Eddy Currents
      7. 13.6 Electric Generators and Back Emf
      8. 13.7 Applications of Electromagnetic Induction
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    10. 14 Inductance
      1. Introduction
      2. 14.1 Mutual Inductance
      3. 14.2 Self-Inductance and Inductors
      4. 14.3 Energy in a Magnetic Field
      5. 14.4 RL Circuits
      6. 14.5 Oscillations in an LC Circuit
      7. 14.6 RLC Series Circuits
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    11. 15 Alternating-Current Circuits
      1. Introduction
      2. 15.1 AC Sources
      3. 15.2 Simple AC Circuits
      4. 15.3 RLC Series Circuits with AC
      5. 15.4 Power in an AC Circuit
      6. 15.5 Resonance in an AC Circuit
      7. 15.6 Transformers
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    12. 16 Electromagnetic Waves
      1. Introduction
      2. 16.1 Maxwell’s Equations and Electromagnetic Waves
      3. 16.2 Plane Electromagnetic Waves
      4. 16.3 Energy Carried by Electromagnetic Waves
      5. 16.4 Momentum and Radiation Pressure
      6. 16.5 The Electromagnetic Spectrum
      7. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
  4. A | Units
  5. B | Conversion Factors
  6. C | Fundamental Constants
  7. D | Astronomical Data
  8. E | Mathematical Formulas
  9. F | Chemistry
  10. G | The Greek Alphabet
  11. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
    11. Chapter 11
    12. Chapter 12
    13. Chapter 13
    14. Chapter 14
    15. Chapter 15
    16. Chapter 16
  12. Index

Challenge Problems

83.

(a) An infinitesimal amount of heat is added reversibly to a system. By combining the first and second laws, show that dU=TdSdWdU=TdSdW. (b) When heat is added to an ideal gas, its temperature and volume change from T1andV1toT2andV2T1andV1toT2andV2. Show that the entropy change of n moles of the gas is given by

ΔS=nCvlnT2T1+nRlnV2V1ΔS=nCvlnT2T1+nRlnV2V1.

84.

Using the result of the preceding problem, show that for an ideal gas undergoing an adiabatic process, TVγ1TVγ1 is constant.

85.

With the help of the two preceding problems, show that ΔSΔS between states 1 and 2 of n moles an ideal gas is given by

ΔS=nCplnT2T1nRlnp2p1ΔS=nCplnT2T1nRlnp2p1.

86.

A cylinder contains 500 g of helium at 120 atm and 20°C20°C. The valve is leaky, and all the gas slowly escapes isothermally into the atmosphere. Use the results of the preceding problem to determine the resulting change in entropy of the universe.

87.

A diatomic ideal gas is brought from an initial equilibrium state at p1=0.50atmp1=0.50atm and T1=300KT1=300K to a final stage with p2=0.20atmp2=0.20atm and T1=500K.T1=500K. Use the results of the previous problem to determine the entropy change per mole of the gas.

88.

The gasoline internal combustion engine operates in a cycle consisting of six parts. Four of these parts involve, among other things, friction, heat exchange through finite temperature differences, and accelerations of the piston; it is irreversible. Nevertheless, it is represented by the ideal reversible Otto cycle, which is illustrated below. The working substance of the cycle is assumed to be air. The six steps of the Otto cycle are as follows:

  1. Isobaric intake stroke (OA). A mixture of gasoline and air is drawn into the combustion chamber at atmospheric pressure p0p0 as the piston expands, increasing the volume of the cylinder from zero to VAVA.
  2. Adiabatic compression stroke (AB). The temperature of the mixture rises as the piston compresses it adiabatically from a volume VAtoVBVAtoVB.
  3. Ignition at constant volume (BC). The mixture is ignited by a spark. The combustion happens so fast that there is essentially no motion of the piston. During this process, the added heat Q1Q1 causes the pressure to increase from pBtopCpBtopC at the constant volume VB(=VC)VB(=VC).
  4. Adiabatic expansion (CD). The heated mixture of gasoline and air expands against the piston, increasing the volume from VCtoVDVCtoVD. This is called the power stroke, as it is the part of the cycle that delivers most of the power to the crankshaft.
  5. Constant-volume exhaust (DA). When the exhaust valve opens, some of the combustion products escape. There is almost no movement of the piston during this part of the cycle, so the volume remains constant at VA(=VD)VA(=VD). Most of the available energy is lost here, as represented by the heat exhaust Q2Q2.
  6. Isobaric compression (AO). The exhaust valve remains open, and the compression from VAVA to zero drives out the remaining combustion products.

(a) Using (i) e=W/Q1e=W/Q1; (ii) W=Q1Q2W=Q1Q2; and (iii) Q1=nCv(TCTB)Q1=nCv(TCTB), Q2=nCv(TDTA)Q2=nCv(TDTA), show that

e=1TDTATCTBe=1TDTATCTB.

(b) Use the fact that steps (ii) and (iv) are adiabatic to show that

e=11rγ1e=11rγ1,

where r=VA/VBr=VA/VB. The quantity r is called the compression ratio of the engine.

(c) In practice, r is kept less than around 7. For larger values, the gasoline-air mixture is compressed to temperatures so high that it explodes before the finely timed spark is delivered. This preignition causes engine knock and loss of power. Show that for r=6r=6 and γ=1.4γ=1.4 (the value for air), e=0.51e=0.51, or an efficiency of 51%.51%. Because of the many irreversible processes, an actual internal combustion engine has an efficiency much less than this ideal value. A typical efficiency for a tuned engine is about 25%to30%25%to30%.

The figure shows a closed loop graph with four points A, B, C and D. The x-axis is V and y-axis is p. The value of V at A and D is equal and at B and C is equal.
89.

An ideal diesel cycle is shown below. This cycle consists of five strokes. In this case, only air is drawn into the chamber during the intake stroke OA. The air is then compressed adiabatically from state A to state B, raising its temperature high enough so that when fuel is added during the power stroke BC, it ignites. After ignition ends at C, there is a further adiabatic power stroke CD. Finally, there is an exhaust at constant volume as the pressure drops from pDpD to pApA, followed by a further exhaust when the piston compresses the chamber volume to zero.

(a) Use W=Q1Q2W=Q1Q2, Q1=nCp(TCTB)Q1=nCp(TCTB), and Q2=nCv(TDTA)Q2=nCv(TDTA) to show that e=WQ1=1TDTAγ(TCTB)e=WQ1=1TDTAγ(TCTB).

(b) Use the fact that ABAB and CDCD are adiabatic to show that

e=11γ(VCVD)γ(VBVA)γ(VCVD)(VBVA)e=11γ(VCVD)γ(VBVA)γ(VCVD)(VBVA).

(c) Since there is no preignition (remember, the chamber does not contain any fuel during the compression), the compression ratio can be larger than that for a gasoline engine. Typically, VA/VB=15andVD/VC=5VA/VB=15andVD/VC=5. For these values and γ=1.4,γ=1.4, show that ε=0.56ε=0.56, or an efficiency of 56%56%. Diesel engines actually operate at an efficiency of about 30%to35%30%to35% compared with 25%to30%25%to30% for gasoline engines.

The figure shows a closed loop graph with four points A, B, C and D. The x-axis is V and y-axis is p. The value of V at A and D is equal and the value of p at B and C is equal.
90.

Consider an ideal gas Joule cycle, also called the Brayton cycle, shown below. Find the formula for efficiency of the engine using this cycle in terms of P1P1, P2P2, and γγ.

The figure shows a closed loop graph with four points 1, 2, 3 and 4. The x-axis is V and y-axis is p. The value of p at 1 and 4 is equal and at 2 and 3 is equal
91.

Derive a formula for the coefficient of performance of a refrigerator using an ideal gas as a working substance operating in the cycle shown below in terms of the properties of the three states labeled 1, 2, and 3.

The figure shows a closed loop graph with three points 1, 2 and 3. The x-axis is V and y-axis is p. The value of V at 1 and 2 is equal and the value of p at 2 and 3 is equal.
92.

Two moles of nitrogen gas, with γ=7/5γ=7/5 for ideal diatomic gases, occupies a volume of 10−2m310−2m3 in an insulated cylinder at temperature 300 K. The gas is adiabatically and reversibly compressed to a volume of 5 L. The piston of the cylinder is locked in its place, and the insulation around the cylinder is removed. The heat-conducting cylinder is then placed in a 300-K bath. Heat from the compressed gas leaves the gas, and the temperature of the gas becomes 300 K again. The gas is then slowly expanded at the fixed temperature 300 K until the volume of the gas becomes 10−2m310−2m3, thus making a complete cycle for the gas. For the entire cycle, calculate (a) the work done by the gas, (b) the heat into or out of the gas, (c) the change in the internal energy of the gas, and (d) the change in entropy of the gas.

93.

A Carnot refrigerator, working between 0°C0°C and 30°C30°C is used to cool a bucket of water containing 10−2m310−2m3 of water at 30°C30°C to 5°C5°C in 2 hours. Find the total amount of work needed.

Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-2/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-2/pages/1-introduction
Citation information

© Oct 6, 2016 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.