Skip to Content
OpenStax Logo
Buy book
  1. Preface
  2. Unit 1. Optics
    1. 1 The Nature of Light
      1. Introduction
      2. 1.1 The Propagation of Light
      3. 1.2 The Law of Reflection
      4. 1.3 Refraction
      5. 1.4 Total Internal Reflection
      6. 1.5 Dispersion
      7. 1.6 Huygens’s Principle
      8. 1.7 Polarization
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    2. 2 Geometric Optics and Image Formation
      1. Introduction
      2. 2.1 Images Formed by Plane Mirrors
      3. 2.2 Spherical Mirrors
      4. 2.3 Images Formed by Refraction
      5. 2.4 Thin Lenses
      6. 2.5 The Eye
      7. 2.6 The Camera
      8. 2.7 The Simple Magnifier
      9. 2.8 Microscopes and Telescopes
      10. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
    3. 3 Interference
      1. Introduction
      2. 3.1 Young's Double-Slit Interference
      3. 3.2 Mathematics of Interference
      4. 3.3 Multiple-Slit Interference
      5. 3.4 Interference in Thin Films
      6. 3.5 The Michelson Interferometer
      7. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    4. 4 Diffraction
      1. Introduction
      2. 4.1 Single-Slit Diffraction
      3. 4.2 Intensity in Single-Slit Diffraction
      4. 4.3 Double-Slit Diffraction
      5. 4.4 Diffraction Gratings
      6. 4.5 Circular Apertures and Resolution
      7. 4.6 X-Ray Diffraction
      8. 4.7 Holography
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
  3. Unit 2. Modern Physics
    1. 5 Relativity
      1. Introduction
      2. 5.1 Invariance of Physical Laws
      3. 5.2 Relativity of Simultaneity
      4. 5.3 Time Dilation
      5. 5.4 Length Contraction
      6. 5.5 The Lorentz Transformation
      7. 5.6 Relativistic Velocity Transformation
      8. 5.7 Doppler Effect for Light
      9. 5.8 Relativistic Momentum
      10. 5.9 Relativistic Energy
      11. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
    2. 6 Photons and Matter Waves
      1. Introduction
      2. 6.1 Blackbody Radiation
      3. 6.2 Photoelectric Effect
      4. 6.3 The Compton Effect
      5. 6.4 Bohr’s Model of the Hydrogen Atom
      6. 6.5 De Broglie’s Matter Waves
      7. 6.6 Wave-Particle Duality
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
    3. 7 Quantum Mechanics
      1. Introduction
      2. 7.1 Wave Functions
      3. 7.2 The Heisenberg Uncertainty Principle
      4. 7.3 The Schrӧdinger Equation
      5. 7.4 The Quantum Particle in a Box
      6. 7.5 The Quantum Harmonic Oscillator
      7. 7.6 The Quantum Tunneling of Particles through Potential Barriers
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    4. 8 Atomic Structure
      1. Introduction
      2. 8.1 The Hydrogen Atom
      3. 8.2 Orbital Magnetic Dipole Moment of the Electron
      4. 8.3 Electron Spin
      5. 8.4 The Exclusion Principle and the Periodic Table
      6. 8.5 Atomic Spectra and X-rays
      7. 8.6 Lasers
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
    5. 9 Condensed Matter Physics
      1. Introduction
      2. 9.1 Types of Molecular Bonds
      3. 9.2 Molecular Spectra
      4. 9.3 Bonding in Crystalline Solids
      5. 9.4 Free Electron Model of Metals
      6. 9.5 Band Theory of Solids
      7. 9.6 Semiconductors and Doping
      8. 9.7 Semiconductor Devices
      9. 9.8 Superconductivity
      10. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    6. 10 Nuclear Physics
      1. Introduction
      2. 10.1 Properties of Nuclei
      3. 10.2 Nuclear Binding Energy
      4. 10.3 Radioactive Decay
      5. 10.4 Nuclear Reactions
      6. 10.5 Fission
      7. 10.6 Nuclear Fusion
      8. 10.7 Medical Applications and Biological Effects of Nuclear Radiation
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    7. 11 Particle Physics and Cosmology
      1. Introduction
      2. 11.1 Introduction to Particle Physics
      3. 11.2 Particle Conservation Laws
      4. 11.3 Quarks
      5. 11.4 Particle Accelerators and Detectors
      6. 11.5 The Standard Model
      7. 11.6 The Big Bang
      8. 11.7 Evolution of the Early Universe
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
  4. A | Units
  5. B | Conversion Factors
  6. C | Fundamental Constants
  7. D | Astronomical Data
  8. E | Mathematical Formulas
  9. F | Chemistry
  10. G | The Greek Alphabet
  11. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
    11. Chapter 11
  12. Index
B
beta (ββ) rays10.4 Nuclear Reactions
binding energy (BE)10.2 Nuclear Binding Energy
binding energy per nucleon (BEN)10.2 Nuclear Binding Energy
birefringent1.7 Polarization
blackbody radiation6.1 Blackbody Radiation
Blu-Ray player8.6 Lasers
body-centered cubic (BCC)9.3 Bonding in Crystalline Solids
Bohr’s model of the hydrogen atom6.4 Bohr’s Model of the Hydrogen Atom
Born interpretation7.1 Wave Functions
breakdown voltage9.7 Semiconductor Devices
breeder reactor10.5 Fission
Brewster’s angle1.7 Polarization
Brewster’s law1.7 Polarization
C
carbon-14 dating10.3 Radioactive Decay
CD player8.6 Lasers
chain reaction10.5 Fission
charge-coupled device (CCD)2.6 The Camera
chart of the nuclides10.1 Properties of Nuclei
chromatic aberrations2.4 Thin Lenses
classical (Galilean) velocity addition5.6 Relativistic Velocity Transformation
collector current9.7 Semiconductor Devices
complex function7.1 Wave Functions
Compton wavelength6.3 The Compton Effect
concave mirror2.2 Spherical Mirrors
constructive interference3.1 Young's Double-Slit Interference
converging lens2.4 Thin Lenses
Copenhagen interpretation7.1 Wave Functions
Cornell Electron Storage Ring11.4 Particle Accelerators and Detectors
cosmic microwave background radiation11.7 Evolution of the Early Universe
cosmological principle11.6 The Big Bang
critical magnetic field9.8 Superconductivity
critical mass10.5 Fission
critical temperature9.8 Superconductivity
criticality10.5 Fission
cut-off frequency6.2 Photoelectric Effect
cut-off wavelength6.2 Photoelectric Effect
J
junction transistor9.7 Semiconductor Devices
P
p-type semiconductor9.6 Semiconductors and Doping
photoelectric effect6.2 Photoelectric Effect
Planck’s constant6.1 Blackbody Radiation
Planck’s hypothesis of energy quanta6.1 Blackbody Radiation
Poisson’s spotIntroduction
polyatomic molecule9.1 Types of Molecular Bonds
population inversion8.6 Lasers
position operator7.1 Wave Functions
postulates of Bohr’s model6.4 Bohr’s Model of the Hydrogen Atom
principal rays2.2 Spherical Mirrors
probability density7.1 Wave Functions
propagation vector6.3 The Compton Effect
proton-proton chain10.6 Nuclear Fusion
R
radial probability density function8.1 The Hydrogen Atom
radioactive dating10.3 Radioactive Decay
radioactive decay law10.3 Radioactive Decay
radius of a nucleus10.1 Properties of Nuclei
Rayleigh–Jeans law6.1 Blackbody Radiation
reduced Planck’s constant6.3 The Compton Effect
refraction1.3 Refraction
Relativistic kinetic energy5.9 Relativistic Energy
Relativistic momentum5.8 Relativistic Momentum
relativistic velocity addition5.6 Relativistic Velocity Transformation
reverse bias configuration9.7 Semiconductor Devices
rotational energy level9.2 Molecular Spectra
Rutherford gold foil experiment6.4 Bohr’s Model of the Hydrogen Atom
Rydberg constant for hydrogen6.4 Bohr’s Model of the Hydrogen Atom
S
scanning electron microscope (SEM)6.6 Wave-Particle Duality
scattering angle6.3 The Compton Effect
Schrödinger’s cat7.1 Wave Functions
Schrödinger’s equation8.1 The Hydrogen Atom
Schrӧdinger’s time-dependent equation7.3 The Schrӧdinger Equation
Schrӧdinger’s time-independent equation7.3 The Schrӧdinger Equation
second postulate of special relativity5.1 Invariance of Physical Laws
selection rule9.2 Molecular Spectra
sign conventions2.4 Thin Lenses
simple magnifier2.7 The Simple Magnifier
single-slit diffraction pattern4.1 Single-Slit Diffraction
small-angle approximation2.2 Spherical Mirrors
Snell’s law1.3 Refraction
special theory of relativity5.1 Invariance of Physical Laws
spectroscopic dispersion4.4 Diffraction Gratings
spectroscopic notation8.1 The Hydrogen Atom
spherical aberration2.2 Spherical Mirrors
spin projection quantum number8.3 Electron Spin
spin quantum number8.3 Electron Spin
spin-flip transitions8.3 Electron Spin
spin-orbit coupling8.3 Electron Spin
state reduction7.1 Wave Functions
Stefan–Boltzmann constant6.1 Blackbody Radiation
Stern-Gerlach experiment8.3 Electron Spin
stimulated emission8.6 Lasers
stopping potential6.2 Photoelectric Effect
Strassman10.5 Fission
U
ultraviolet catastrophe6.1 Blackbody Radiation
unpolarized1.7 Polarization
X
X-ray diffraction4.6 X-Ray Diffraction
Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-3/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-3/pages/1-introduction
Citation information

© Sep 29, 2016 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.