Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo

Figure shows a series of red concentric rings on a black background. At the center is a bright red spot.
Figure 4.1 A steel ball bearing illuminated by a laser does not cast a sharp, circular shadow. Instead, a series of diffraction fringes and a central bright spot are observed. Known as Poisson’s spot, the effect was first predicted by Augustin-Jean Fresnel (1788–1827) as a consequence of diffraction of light waves. Based on principles of ray optics, Siméon-Denis Poisson (1781–1840) argued against Fresnel’s prediction. (credit: modification of work by Harvard Natural Science Lecture Demonstrations)

Imagine passing a monochromatic light beam through a narrow opening—a slit just a little wider than the wavelength of the light. Instead of a simple shadow of the slit on the screen, you will see that an interference pattern appears, even though there is only one slit.

In the chapter on interference, we saw that you need two sources of waves for interference to occur. How can there be an interference pattern when we have only one slit? In The Nature of Light, we learned that, due to Huygens’s principle, we can imagine a wave front as equivalent to infinitely many point sources of waves. Thus, a wave from a slit can behave not as one wave but as an infinite number of point sources. These waves can interfere with each other, resulting in an interference pattern without the presence of a second slit. This phenomenon is called diffraction.

Another way to view this is to recognize that a slit has a small but finite width. In the preceding chapter, we implicitly regarded slits as objects with positions but no size. The widths of the slits were considered negligible. When the slits have finite widths, each point along the opening can be considered a point source of light—a foundation of Huygens’s principle. Because real-world optical instruments must have finite apertures (otherwise, no light can enter), diffraction plays a major role in the way we interpret the output of these optical instruments. For example, diffraction places limits on our ability to resolve images or objects. This is a problem that we will study later in this chapter.

Order a print copy

As an Amazon Associate we earn from qualifying purchases.


This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at
Citation information

© Jan 19, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.