Skip to Content
OpenStax Logo
University Physics Volume 3

10.2 Nuclear Binding Energy

University Physics Volume 310.2 Nuclear Binding Energy
Buy book
  1. Preface
  2. Unit 1. Optics
    1. 1 The Nature of Light
      1. Introduction
      2. 1.1 The Propagation of Light
      3. 1.2 The Law of Reflection
      4. 1.3 Refraction
      5. 1.4 Total Internal Reflection
      6. 1.5 Dispersion
      7. 1.6 Huygens’s Principle
      8. 1.7 Polarization
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    2. 2 Geometric Optics and Image Formation
      1. Introduction
      2. 2.1 Images Formed by Plane Mirrors
      3. 2.2 Spherical Mirrors
      4. 2.3 Images Formed by Refraction
      5. 2.4 Thin Lenses
      6. 2.5 The Eye
      7. 2.6 The Camera
      8. 2.7 The Simple Magnifier
      9. 2.8 Microscopes and Telescopes
      10. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
    3. 3 Interference
      1. Introduction
      2. 3.1 Young's Double-Slit Interference
      3. 3.2 Mathematics of Interference
      4. 3.3 Multiple-Slit Interference
      5. 3.4 Interference in Thin Films
      6. 3.5 The Michelson Interferometer
      7. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    4. 4 Diffraction
      1. Introduction
      2. 4.1 Single-Slit Diffraction
      3. 4.2 Intensity in Single-Slit Diffraction
      4. 4.3 Double-Slit Diffraction
      5. 4.4 Diffraction Gratings
      6. 4.5 Circular Apertures and Resolution
      7. 4.6 X-Ray Diffraction
      8. 4.7 Holography
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
  3. Unit 2. Modern Physics
    1. 5 Relativity
      1. Introduction
      2. 5.1 Invariance of Physical Laws
      3. 5.2 Relativity of Simultaneity
      4. 5.3 Time Dilation
      5. 5.4 Length Contraction
      6. 5.5 The Lorentz Transformation
      7. 5.6 Relativistic Velocity Transformation
      8. 5.7 Doppler Effect for Light
      9. 5.8 Relativistic Momentum
      10. 5.9 Relativistic Energy
      11. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
    2. 6 Photons and Matter Waves
      1. Introduction
      2. 6.1 Blackbody Radiation
      3. 6.2 Photoelectric Effect
      4. 6.3 The Compton Effect
      5. 6.4 Bohr’s Model of the Hydrogen Atom
      6. 6.5 De Broglie’s Matter Waves
      7. 6.6 Wave-Particle Duality
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
    3. 7 Quantum Mechanics
      1. Introduction
      2. 7.1 Wave Functions
      3. 7.2 The Heisenberg Uncertainty Principle
      4. 7.3 The Schrӧdinger Equation
      5. 7.4 The Quantum Particle in a Box
      6. 7.5 The Quantum Harmonic Oscillator
      7. 7.6 The Quantum Tunneling of Particles through Potential Barriers
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    4. 8 Atomic Structure
      1. Introduction
      2. 8.1 The Hydrogen Atom
      3. 8.2 Orbital Magnetic Dipole Moment of the Electron
      4. 8.3 Electron Spin
      5. 8.4 The Exclusion Principle and the Periodic Table
      6. 8.5 Atomic Spectra and X-rays
      7. 8.6 Lasers
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
    5. 9 Condensed Matter Physics
      1. Introduction
      2. 9.1 Types of Molecular Bonds
      3. 9.2 Molecular Spectra
      4. 9.3 Bonding in Crystalline Solids
      5. 9.4 Free Electron Model of Metals
      6. 9.5 Band Theory of Solids
      7. 9.6 Semiconductors and Doping
      8. 9.7 Semiconductor Devices
      9. 9.8 Superconductivity
      10. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    6. 10 Nuclear Physics
      1. Introduction
      2. 10.1 Properties of Nuclei
      3. 10.2 Nuclear Binding Energy
      4. 10.3 Radioactive Decay
      5. 10.4 Nuclear Reactions
      6. 10.5 Fission
      7. 10.6 Nuclear Fusion
      8. 10.7 Medical Applications and Biological Effects of Nuclear Radiation
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    7. 11 Particle Physics and Cosmology
      1. Introduction
      2. 11.1 Introduction to Particle Physics
      3. 11.2 Particle Conservation Laws
      4. 11.3 Quarks
      5. 11.4 Particle Accelerators and Detectors
      6. 11.5 The Standard Model
      7. 11.6 The Big Bang
      8. 11.7 Evolution of the Early Universe
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
  4. A | Units
  5. B | Conversion Factors
  6. C | Fundamental Constants
  7. D | Astronomical Data
  8. E | Mathematical Formulas
  9. F | Chemistry
  10. G | The Greek Alphabet
  11. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
    11. Chapter 11
  12. Index

Learning Objectives

By the end of this section, you will be able to:
  • Calculate the mass defect and binding energy for a wide range of nuclei
  • Use a graph of binding energy per nucleon (BEN) versus mass number (A)(A) graph to assess the relative stability of a nucleus
  • Compare the binding energy of a nucleon in a nucleus to the ionization energy of an electron in an atom

The forces that bind nucleons together in an atomic nucleus are much greater than those that bind an electron to an atom through electrostatic attraction. This is evident by the relative sizes of the atomic nucleus and the atom (10−15and10−10m,(10−15and10−10m, respectively). The energy required to pry a nucleon from the nucleus is therefore much larger than that required to remove (or ionize) an electron in an atom. In general, all nuclear changes involve large amounts of energy per particle undergoing the reaction. This has numerous practical applications.

Mass Defect

According to nuclear particle experiments, the total mass of a nucleus (mnuc)(mnuc) is less than the sum of the masses of its constituent nucleons (protons and neutrons). The mass difference, or mass defect, is given by

Δm=Zmp+(AZ)mnmnucΔm=Zmp+(AZ)mnmnuc
(10.4)

where ZmpZmp is the total mass of the protons, (AZ)mn(AZ)mn is the total mass of the neutrons, and mnucmnuc is the mass of the nucleus. According to Einstein’s special theory of relativity, mass is a measure of the total energy of a system (E=mc2E=mc2). Thus, the total energy of a nucleus is less than the sum of the energies of its constituent nucleons. The formation of a nucleus from a system of isolated protons and neutrons is therefore an exothermic reaction—meaning that it releases energy. The energy emitted, or radiated, in this process is (Δm)c2.(Δm)c2.

Now imagine this process occurs in reverse. Instead of forming a nucleus, energy is put into the system to break apart the nucleus (Figure 10.6). The amount of energy required is called the total binding energy (BE), Eb.Eb.

Binding Energy

The binding energy is equal to the amount of energy released in forming the nucleus, and is therefore given by

Eb=(Δm)c2.Eb=(Δm)c2.
(10.5)

Experimental results indicate that the binding energy for a nucleus with mass number A>8A>8 is roughly proportional to the total number of nucleons in the nucleus, A. The binding energy of a magnesium nucleus (24Mg24Mg), for example, is approximately two times greater than for the carbon nucleus (12C12C).

The figure shows a reaction. The LHS shows a nucleus plus binding energy. This nucleus is a cluster of closely packed protons and neutrons and is labeled, smaller mass. On the RHS is a nucleus with loosely packed protons and neutrons, labeled, separated nucleons, greater mass.
Figure 10.6 The binding energy is the energy required to break a nucleus into its constituent protons and neutrons. A system of separated nucleons has a greater mass than a system of bound nucleons.

Example 10.2

Mass Defect and Binding Energy of the Deuteron Calculate the mass defect and the binding energy of the deuteron. The mass of the deuteron is mD=3.34359×10−27kgmD=3.34359×10−27kg or 1875.61MeV/c2.1875.61MeV/c2.

Solution From Equation 10.4, the mass defect for the deuteron is

Δm=mp+mnmD=938.28MeV/c2+939.57MeV/c21875.61MeV/c2=2.24MeV/c2.Δm=mp+mnmD=938.28MeV/c2+939.57MeV/c21875.61MeV/c2=2.24MeV/c2.

The binding energy of the deuteron is then

Eb=(Δm)c2=(2.24MeV/c2)(c2)=2.24MeV.Eb=(Δm)c2=(2.24MeV/c2)(c2)=2.24MeV.

Over two million electron volts are needed to break apart a deuteron into a proton and a neutron. This very large value indicates the great strength of the nuclear force. By comparison, the greatest amount of energy required to liberate an electron bound to a hydrogen atom by an attractive Coulomb force (an electromagnetic force) is about 10 eV.

Graph of Binding Energy per Nucleon

In nuclear physics, one of the most important experimental quantities is the binding energy per nucleon (BEN), which is defined by

BEN=EbABEN=EbA
(10.6)

This quantity is the average energy required to remove an individual nucleon from a nucleus—analogous to the ionization energy of an electron in an atom. If the BEN is relatively large, the nucleus is relatively stable. BEN values are estimated from nuclear scattering experiments.

A graph of binding energy per nucleon versus atomic number A is given in Figure 10.7. This graph is considered by many physicists to be one of the most important graphs in physics. Two notes are in order. First, typical BEN values range from 6–10 MeV, with an average value of about 8 MeV. In other words, it takes several million electron volts to pry a nucleon from a typical nucleus, as compared to just 13.6 eV to ionize an electron in the ground state of hydrogen. This is why nuclear force is referred to as the “strong” nuclear force.

Second, the graph rises at low A, peaks very near iron (Fe,A=56),(Fe,A=56), and then tapers off at high A. The peak value suggests that the iron nucleus is the most stable nucleus in nature (it is also why nuclear fusion in the cores of stars ends with Fe). The reason the graph rises and tapers off has to do with competing forces in the nucleus. At low values of A, attractive nuclear forces between nucleons dominate over repulsive electrostatic forces between protons. But at high values of A, repulsive electrostatic forces between forces begin to dominate, and these forces tend to break apart the nucleus rather than hold it together.

Graph of binding energy per nucleon, MeV, versus mass number, A. The graph starts close to point 2,1 and peaks close to element 56 Fe, which has an MeV value of between 8 and 9. After this, the graph tapers off to an MeV value of roughly 7. 56 Fe is labeled most stable nucleus. A vertical bar at A = 60 is labeled region of very stable nuclides. Both sides of this bar have an arrow pointing to it. The left one is labeled fusion and the right one is labeled fission.
Figure 10.7 In this graph of binding energy per nucleon for stable nuclei, the BEN is greatest for nuclei with a mass near 56Fe56Fe. Therefore, fusion of nuclei with mass numbers much less than that of Fe, and fission of nuclei with mass numbers greater than that of Fe, are exothermic processes.

As we will see, the BEN-versus-A graph implies that nuclei divided or combined release an enormous amount of energy. This is the basis for a wide range of phenomena, from the production of electricity at a nuclear power plant to sunlight.

Example 10.3

Tightly Bound Alpha Nuclides Calculate the binding energy per nucleon of an 4He(α particle)4He(α particle).

Strategy Determine the total binding energy (BE) using the equation BE=(Δm)c2,BE=(Δm)c2, where ΔmΔm is the mass defect. The binding energy per nucleon (BEN) is BE divided by A.

Solution For 4He4He, we have Z=N=2.Z=N=2. The total binding energy is

BE={[2mp+2mn]m(4He)}c2.BE={[2mp+2mn]m(4He)}c2.

These masses are m(4He)=4.002602u,m(4He)=4.002602u, mp=1.007825u,mp=1.007825u, and mn=1.008665u.mn=1.008665u. Thus we have,

BE=(0.030378u)c2.BE=(0.030378u)c2.

Noting that 1u=931.5MeV/c2,1u=931.5MeV/c2, we find

BE=(0.030378)(931.5MeV/c2)c2=28.3MeV.BE=(0.030378)(931.5MeV/c2)c2=28.3MeV.

Since A=4,A=4, the total binding energy per nucleon is

BEN=7.07MeV/nucleon.BEN=7.07MeV/nucleon.

Significance Notice that the binding energy per nucleon for 4He4He is much greater than for the hydrogen isotopes (only3MeV/nucleon).(only3MeV/nucleon). Therefore, helium nuclei cannot break down hydrogen isotopes without energy being put into the system.

Check Your Understanding 10.2

If the binding energy per nucleon is large, does this make it harder or easier to strip off a nucleon from a nucleus?

Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-3/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-3/pages/1-introduction
Citation information

© Sep 29, 2016 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.