Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo

A photograph of two bubbles is shown. The bubbles have vivid colors spanning from pink to dark blue and varying across the surface.
Figure 3.1 Soap bubbles are blown from clear fluid into very thin films. The colors we see are not due to any pigmentation but are the result of light interference, which enhances specific wavelengths for a given thickness of the film.

The most certain indication of a wave is interference. This wave characteristic is most prominent when the wave interacts with an object that is not large compared with the wavelength. Interference is observed for water waves, sound waves, light waves, and, in fact, all types of waves.

If you have ever looked at the reds, blues, and greens in a sunlit soap bubble and wondered how straw-colored soapy water could produce them, you have hit upon one of the many phenomena that can only be explained by the wave character of light (see Figure 3.1). The same is true for the colors seen in an oil slick or in the light reflected from a DVD disc. These and other interesting phenomena cannot be explained fully by geometric optics. In these cases, light interacts with objects and exhibits wave characteristics. The branch of optics that considers the behavior of light when it exhibits wave characteristics is called wave optics (sometimes called physical optics). It is the topic of this chapter.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-3/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-3/pages/1-introduction
Citation information

© Jul 23, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.