Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo

An illustration of a GPS satellite
Figure 5.1 Special relativity explains how time passes slightly differently on Earth and within the rapidly moving global positioning satellite (GPS). GPS units in vehicles could not find their correct location on Earth without taking this correction into account. (credit: modification of work by U.S. Air Force)

The special theory of relativity was proposed in 1905 by Albert Einstein (1879–1955). It describes how time, space, and physical phenomena appear in different frames of reference that are moving at constant velocity with respect to each other. This differs from Einstein’s later work on general relativity, which deals with any frame of reference, including accelerated frames.

The theory of relativity led to a profound change in the way we perceive space and time. The “common sense” rules that we use to relate space and time measurements in the Newtonian worldview differ seriously from the correct rules at speeds near the speed of light. For example, the special theory of relativity tells us that measurements of length and time intervals are not the same in reference frames moving relative to one another. A particle might be observed to have a lifetime of 1.0×108s1.0×108s in one reference frame, but a lifetime of 2.0×108s2.0×108s in another; and an object might be measured to be 2.0 m long in one frame and 3.0 m long in another frame. These effects are usually significant not only at speeds comparable to the speed of light, but even at the much lower speeds of the global positioning satellite. Every signal, satellite position, earth location, must be precisely measured, and the slightest differences in time can create significant inaccuracies. The different lengths of the same difference in different reference frames can therefore be significant amount to render the system unusable. To overcome these issues, Gladys West, a computer scientist and mathematician, developed and programmed the algorithms capable of precisely measuring the Earth's shape, the signals, and satellite positions, and she accounted for the relativistic effects in her algorithm. The United States' GPS system that West helped develop has been the most extensively used geolocation system in the world.

Unlike Newtonian mechanics, which describes the motion of particles, or Maxwell's equations, which specify how the electromagnetic field behaves, special relativity is not restricted to a particular type of phenomenon. Instead, its rules on space and time affect all fundamental physical theories.

The modifications of Newtonian mechanics in special relativity do not invalidate classical Newtonian mechanics or require its replacement. Instead, the equations of relativistic mechanics differ meaningfully from those of classical Newtonian mechanics only for objects moving at relativistic speeds (i.e., speeds less than, but comparable to, the speed of light). In the macroscopic world that you encounter in your daily life, the relativistic equations reduce to classical equations, and the predictions of classical Newtonian mechanics agree closely enough with experimental results to disregard relativistic corrections.

Order a print copy

As an Amazon Associate we earn from qualifying purchases.


This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at
Citation information

© Jan 19, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.