Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo

Binomial Distribution
a discrete random variable (RV) which arises from Bernoulli trials; there are a fixed number, n, of independent trials. “Independent” means that the result of any trial (for example, trial 1) does not affect the results of the following trials, and all trials are conducted under the same conditions. Under these circumstances the binomial RV X is defined as the number of successes in n trials. The notation is: X~B(n,p). The mean is μ = np and the standard deviation is σ = npq npq . The probability of exactly x successes in n trials is P ( X = x ) = n x p x q n x P(X=x)= n x p x q n x .
Confidence Interval (CI)
an interval estimate for an unknown population parameter. This depends on:
  • the desired confidence level,
  • information that is known about the distribution (for example, known standard deviation),
  • the sample and its size.
Confidence Level (CL)
the percent expression for the probability that the confidence interval contains the true population parameter; for example, if the CL = 90%, then in 90 out of 100 samples the interval estimate will enclose the true population parameter.
Degrees of Freedom (df)
the number of objects in a sample that are free to vary
Error Bound for a Population Mean (EBM)
the margin of error; depends on the confidence level, sample size, and known or estimated population standard deviation.
Inferential Statistics
also called statistical inference or inductive statistics; this facet of statistics deals with estimating a population parameter based on a sample statistic. For example, if four out of the 100 calculators sampled are defective we might infer that four percent of the production is defective.
Normal Distribution
a continuous random variable (RV) with pdf f(x)= 1 σ 2π e (xμ) 2 /2 σ 2 f(x)= 1 σ 2π e (xμ) 2 /2 σ 2 , where μ is the mean of the distribution and σ is the standard deviation, notation: X ~ N(μ,σ). If μ = 0 and σ = 1, the RV is called the standard normal distribution.
Parameter
a numerical characteristic of a population
Point Estimate
a single number computed from a sample and used to estimate a population parameter
Standard Deviation
a number that is equal to the square root of the variance and measures how far data values are from their mean; notation: s for sample standard deviation and σ for population standard deviation
Student's t-Distribution
investigated and reported by William S. Gossett in 1908 and published under the pseudonym Student; the major characteristics of the random variable (RV) are:
  • It is continuous and assumes any real values.
  • The pdf is symmetrical about its mean of zero. However, it is more spread out and flatter at the apex than the normal distribution.
  • It approaches the standard normal distribution as n get larger.
  • There is a "family" of t–distributions: each representative of the family is completely defined by the number of degrees of freedom, which is one less than the number of data.
Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/introductory-statistics-2e/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/introductory-statistics-2e/pages/1-introduction
Citation information

© Jul 18, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.