Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo

AND Event
An outcome is in the event A AND B if the outcome is in both A AND B at the same time.
Complement Event
The complement of event A consists of all outcomes that are NOT in A.
Conditional Probability
the likelihood that an event will occur given that another event has already occurred
Conditional Probability of A GIVEN B
P(A|B) is the probability that event A will occur given that the event B has already occurred.
Conditional Probability of One Event Given Another Event
P(A|B) is the probability that event A will occur given that the event B has already occurred.
contingency table
the method of displaying a frequency distribution as a table with rows and columns to show how two variables may be dependent (contingent) upon each other; the table provides an easy way to calculate conditional probabilities.
Dependent Events
If two events are NOT independent, then we say that they are dependent.
Equally Likely
Each outcome of an experiment has the same probability.
Event
a subset of the set of all outcomes of an experiment; the set of all outcomes of an experiment is called a sample space and is usually denoted by S. An event is an arbitrary subset in S. It can contain one outcome, two outcomes, no outcomes (empty subset), the entire sample space, and the like. Standard notations for events are capital letters such as A, B, C, and so on.
Experiment
a planned activity carried out under controlled conditions
Independent Events
The occurrence of one event has no effect on the probability of the occurrence of another event. Events A and B are independent if one of the following is true:
  1. P(A|B) = P(A)
  2. P(B|A) = P(B)
  3. P(A AND B) = P(A)P(B)
Mutually Exclusive
Two events are mutually exclusive if the probability that they both happen at the same time is zero. If events A and B are mutually exclusive, then P(A AND B) = 0.
Or Event
An outcome is in the event A OR B if the outcome is in A or is in B or is in both A and B.
Outcome
a particular result of an experiment
Probability
a number between zero and one, inclusive, that gives the likelihood that a specific event will occur; the foundation of statistics is given by the following 3 axioms (by A.N. Kolmogorov, 1930’s): Let S denote the sample space and A and B are two events in S. Then:
  • 0 ≤ P(A) ≤ 1
  • If A and B are any two mutually exclusive events, then P(A OR B) = P(A) + P(B).
  • P(S) = 1
Sample Space
the set of all possible outcomes of an experiment
Tree Diagram
the useful visual representation of a sample space and events in the form of a “tree” with branches marked by possible outcomes together with associated probabilities (frequencies, relative frequencies)
Venn Diagram
the visual representation of a sample space and events in the form of circles or ovals showing their intersections
Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/introductory-statistics-2e/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/introductory-statistics-2e/pages/1-introduction
Citation information

© Jul 18, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.