Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Introductory Statistics 2e

3.6 Probability Topics

Introductory Statistics 2e3.6 Probability Topics

Stats Lab

Probability Topics

Class time:

Names:

Student Learning Outcomes

  • The student will use theoretical and empirical methods to estimate probabilities.
  • The student will appraise the differences between the two estimates.
  • The student will demonstrate an understanding of long-term relative frequencies.

Do the Experiment Count out 40 mixed-color M&Ms®, which is approximately one small bag’s worth. Record the number of each color in Table 3.12. Use the information from this table to complete Table 3.13.

Next, put the M&Ms in a cup. The experiment is to pick two M&Ms, one at a time. Do not look at them as you pick them. The first time through, replace the first M&M before picking the second one. Record the results in the “With Replacement” column of Table 3.14. Do this 12 times.

The second time through, after picking the first M&M, do not replace it before picking the second one. Then, pick the second one. Record the results in the “Without Replacement” column section of Table 3.13. After you record the pick, put both M&Ms back. Do this a total of 12 times, also.

Use the data from Table 3.14 to calculate the empirical probabilities shown in Table 3.15.
Leave your answers in unreduced fractional form. Do not multiply out any fractions.

Color Quantity
Yellow (Y)
Green (G)
Blue (BL)
Brown (B)
Orange (O)
Red (R)
Table 3.12 Population
With Replacement Without Replacement
P(2 reds)
P(R1B2 OR B1R2)
P(R1 AND G2)
P(G2|R1)
P(no yellows)
P(doubles)
P(no doubles)
Table 3.13 Theoretical Probabilities

NOTE

G2 = green on second pick; R1 = red on first pick; B1 = brown on first pick; B2 = brown on second pick; doubles = both picks are the same colour.

With Replacement Without Replacement
( __ , __ ) ( __ , __ ) ( __ , __ ) ( __ , __ )
( __ , __ ) ( __ , __ ) ( __ , __ ) ( __ , __ )
( __ , __ ) ( __ , __ ) ( __ , __ ) ( __ , __ )
( __ , __ ) ( __ , __ ) ( __ , __ ) ( __ , __ )
( __ , __ ) ( __ , __ ) ( __ , __ ) ( __ , __ )
( __ , __ ) ( __ , __ ) ( __ , __ ) ( __ , __ )
( __ , __ ) ( __ , __ ) ( __ , __ ) ( __ , __ )
( __ , __ ) ( __ , __ ) ( __ , __ ) ( __ , __ )
( __ , __ ) ( __ , __ ) ( __ , __ ) ( __ , __ )
( __ , __ ) ( __ , __ ) ( __ , __ ) ( __ , __ )
( __ , __ ) ( __ , __ ) ( __ , __ ) ( __ , __ )
( __ , __ ) ( __ , __ ) ( __ , __ ) ( __ , __ )
Table 3.14 Empirical Results
With Replacement Without Replacement
P(2 reds)
P(R1B2 OR B1R2)
P(R1 AND G2)
P(G2|R1)
P(no yellows)
P(doubles)
P(no doubles)
Table 3.15 Empirical Probabilities

Discussion Questions

  1. Why are the “With Replacement” and “Without Replacement” probabilities different?
  2. Convert P(no yellows) to decimal format for both Theoretical “With Replacement” and for Empirical “With Replacement”. Round to four decimal places.
    1. Theoretical “With Replacement”: P(no yellows) = _______
    2. Empirical “With Replacement”: P(no yellows) = _______
    3. Are the decimal values “close”? Did you expect them to be closer together or farther apart? Why?
  3. If you increased the number of times you picked two M&Ms to 240 times, why would empirical probability values change?
  4. Would this change (see part 3) cause the empirical probabilities and theoretical probabilities to be closer together or farther apart? How do you know?
  5. Explain the differences in what P(G1 AND R2) and P(R1|G2) represent. Hint: Think about the sample space for each probability.
Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/introductory-statistics-2e/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/introductory-statistics-2e/pages/1-introduction
Citation information

© Jul 18, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.