Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo

8.1 A Single Population Mean using the Normal Distribution

X ¯ ~N( μ X , σ n ) X ¯ ~N( μ X , σ n ) The distribution of sample means is normally distributed with mean equal to the population mean and standard deviation given by the population standard deviation divided by the square root of the sample size.

The general form for a confidence interval for a single population mean, known standard deviation, normal distribution is given by
(lower bound, upper bound) = (point estimate – EBM, point estimate + EBM)
= ( x ¯ EBM, x ¯ +EBM) ( x ¯ EBM, x ¯ +EBM)
= ( x ¯ z σ n , x ¯ +z σ n ) ( x ¯ z σ n , x ¯ +z σ n )

EBM = z σ n z σ n = the error bound for the mean, or the margin of error for a single population mean; this formula is used when the population standard deviation is known.

CL = confidence level, or the proportion of confidence intervals created that are expected to contain the true population parameter

α = 1 – CL = the proportion of confidence intervals that will not contain the population parameter

z α 2 z α 2 = the z-score with the property that the area to the right of the z-score is   2   2 this is the z-score used in the calculation of "EBM where α = 1 – CL.

n = z 2 σ 2 EB M 2 z 2 σ 2 EB M 2 = the formula used to determine the sample size (n) needed to achieve a desired margin of error at a given level of confidence

General form of a confidence interval

(lower value, upper value) = (point estimate−error bound, point estimate + error bound)

To find the error bound when you know the confidence interval

error bound = upper value−point estimate OR error bound = upper valuelower value 2 upper valuelower value 2

Single Population Mean, Known Standard Deviation, Normal Distribution

Use the Normal Distribution for Means, Population Standard Deviation is Known EBM = z α 2 σ n α 2 σ n

The confidence interval has the format ( x ¯ x ¯ EBM, x ¯ x ¯ + EBM).

8.2 A Single Population Mean using the Student t Distribution

s = the standard deviation of sample values.

t=  x ¯ μ s n t=  x ¯ μ s n is the formula for the t-score which measures how far away a measure is from the population mean in the Student’s t-distribution

df = n - 1; the degrees of freedom for a Student’s t-distribution where n represents the size of the sample

T~tdf the random variable, T, has a Student’s t-distribution with df degrees of freedom

EBM= t α 2 s n EBM= t α 2 s n = the error bound for the population mean when the population standard deviation is unknown

t α 2 t α 2 is the t-score in the Student’s t-distribution with area to the right equal to α 2 α 2

The general form for a confidence interval for a single mean, population standard deviation unknown, Student's t is given by (lower bound, upper bound)
= (point estimate – EBM, point estimate + EBM)
= ( x ¯ ts n , x ¯ ts n ) ( x ¯ ts n , x ¯ ts n )

8.3 A Population Proportion

p′ = x / n where x represents the number of successes and n represents the sample size. The variable p′ is the sample proportion and serves as the point estimate for the true population proportion.

q′ = 1 – p

p ~N( p, pq n ) p ~N( p, pq n ) The variable pp has a binomial distribution that can be approximated with the normal distribution shown here.

EBP = the error bound for a proportion = z α 2 p q n z α 2 p q n

Confidence interval for a proportion:

(lower bound, upper bound) =( p EBP, p +EBP)=( p z p q n ,  p +z p q n ) =( p EBP, p +EBP)=( p z p q n ,  p +z p q n )

n=  z α 2 2 p q EB P 2 n=  z α 2 2 p q EB P 2 provides the number of participants needed to estimate the population proportion with confidence 1 - α and margin of error EBP.

Use the normal distribution for a single population proportion p = x n p = x n

EBP=( z α 2 ) pq n  p+q=1 EBP=( z α 2 ) pq n  p+q=1

The confidence interval has the format (ppEBP, pp + EBP).

x ¯ x ¯ is a point estimate for μ

pp is a point estimate for ρ

s is a point estimate for σ

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/introductory-statistics-2e/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/introductory-statistics-2e/pages/1-introduction
Citation information

© Jul 18, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.