Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Introductory Statistics 2e

9.2 Outcomes and the Type I and Type II Errors

Introductory Statistics 2e9.2 Outcomes and the Type I and Type II Errors

When you perform a hypothesis test, there are four possible outcomes depending on the actual truth (or falseness) of the null hypothesis H0 and the decision to reject or not. The outcomes are summarized in the following table:

ACTION H0 IS ACTUALLY ...
True False
Do not reject H0 Correct Outcome Type II error
Reject H0 Type I Error Correct Outcome
Table 9.2

The four possible outcomes in the table are:

  1. The decision is not to reject H0 when H0 is true (correct decision).
  2. The decision is to reject H0 when H0 is true (incorrect decision known as aType I error).
  3. The decision is not to reject H0 when, in fact, H0 is false (incorrect decision known as a Type II error).
  4. The decision is to reject H0 when H0 is false (correct decision whose probability is called the Power of the Test).

Each of the errors occurs with a particular probability. The Greek letters α and β represent the probabilities.

α = probability of a Type I error = P(Type I error) = probability of rejecting the null hypothesis when the null hypothesis is true.

β = probability of a Type II error = P(Type II error) = probability of not rejecting the null hypothesis when the null hypothesis is false.

α and β should be as small as possible because they are probabilities of errors. They are rarely zero.

The Power of the Test is 1 – β. Ideally, we want a high power that is as close to one as possible. Increasing the sample size can increase the Power of the Test.

The following are examples of Type I and Type II errors.

Example 9.5

Suppose the null hypothesis, H0, is: Navah's rock climbing equipment is safe.

Type I error: Navah thinks that her rock climbing equipment may not be safe when, in fact, it really is safe. Type II error: Navah thinks that her rock climbing equipment may be safe when, in fact, it is not safe.

α = probability that Navah thinks her rock climbing equipment may not be safe when, in fact, it really is safe. β = probability that Navah thinks her rock climbing equipment may be safe when, in fact, it is not safe.

Notice that, in this case, the error with the greater consequence is the Type II error. (If Navah thinks her rock climbing equipment is safe, she will go ahead and use it.)

Try It 9.5

Suppose the null hypothesis, H0, is: the blood cultures contain no traces of pathogen X. State the Type I and Type II errors.

Example 9.6

Suppose the null hypothesis, H0, is: The victim of an automobile accident is alive when they arrive at the emergency room of a hospital.

Type I error: The emergency crew thinks that the victim is dead when, in fact, the victim is alive. Type II error: The emergency crew does not know if the victim is alive when, in fact, the victim is dead.

α = probability that the emergency crew thinks the victim is dead when, in fact, the victim is really alive = P(Type I error). β = probability that the emergency crew does not know if the victim is alive when, in fact, the victim is dead = P(Type II error).

The error with the greater consequence is the Type I error. (If the emergency crew thinks the victim is dead, they will not treat them.)

Try It 9.6

Suppose the null hypothesis, H0, is: a patient is not sick. Which type of error has the greater consequence, Type I or Type II?

Example 9.7

A company called Genetic Labs claims to be able to increase the likelihood that a pregnancy will result in a male being born. Statisticians want to test the claim. Suppose that the null hypothesis, H0, is: Genetic Labs has no effect on sex outcome.

Type I error: This results when a true null hypothesis is rejected. In the context of this scenario, we would state that we believe that Genetic Labs influences the sex outcome, when in fact it has no effect. The probability of this error occurring is denoted by the Greek letter alpha, α.

Type II error: This results when we fail to reject a false null hypothesis. In context, we would state that Genetic Labs does not influence the sex outcome of a pregnancy when, in fact, it does. The probability of this error occurring is denoted by the Greek letter beta, β.

The error of greater consequence would be the Type I error since people would use the Genetic Labs product in hopes of increasing the chances of having a male.

Try It 9.7

“Red tide” is a bloom of poison-producing algae–a few different species of a class of plankton called dinoflagellates. When the weather and water conditions cause these blooms, shellfish such as clams living in the area develop dangerous levels of a paralysis-inducing toxin. In Massachusetts, the Division of Marine Fisheries (DMF) monitors levels of the toxin in shellfish by regular sampling of shellfish along the coastline. If the mean level of toxin in clams exceeds 800 μg (micrograms) of toxin per kg of clam meat in any area, clam harvesting is banned there until the bloom is over and levels of toxin in clams subside. Describe both a Type I and a Type II error in this context, and state which error has the greater consequence.

Example 9.8

A certain experimental drug claims a cure rate of at least 75% for males with prostate cancer. Describe both the Type I and Type II errors in context. Which error is the more serious?

Type I: A cancer patient believes the cure rate for the drug is less than 75% when it actually is at least 75%.

Type II: A cancer patient believes the experimental drug has at least a 75% cure rate when it has a cure rate that is less than 75%.

In this scenario, the Type II error contains the more severe consequence. If a patient believes the drug works at least 75% of the time, this most likely will influence the patient’s (and doctor’s) choice about whether to use the drug as a treatment option.

Try It 9.8

Determine both Type I and Type II errors for the following scenario:

Assume a null hypothesis, H0, that states the percentage of adults with jobs is at least 88%.

Identify the Type I and Type II errors from these four statements.

  1. Not to reject the null hypothesis that the percentage of adults who have jobs is at least 88% when that percentage is actually less than 88%
  2. Not to reject the null hypothesis that the percentage of adults who have jobs is at least 88% when the percentage is actually at least 88%.
  3. Reject the null hypothesis that the percentage of adults who have jobs is at least 88% when the percentage is actually at least 88%.
  4. Reject the null hypothesis that the percentage of adults who have jobs is at least 88% when that percentage is actually less than 88%.
Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/introductory-statistics-2e/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/introductory-statistics-2e/pages/1-introduction
Citation information

© Jul 18, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.