Introductory Statistics 2e

# 1.4Experimental Design and Ethics

Introductory Statistics 2e1.4 Experimental Design and Ethics

Does aspirin reduce the risk of heart attacks? Is one brand of fertilizer more effective at growing roses than another? Is fatigue as dangerous to a driver as the influence of alcohol? Questions like these are answered using randomized experiments. In this module, you will learn important aspects of experimental design. Proper study design ensures the production of reliable, accurate data.

The purpose of an experiment is to investigate the relationship between two variables. When one variable causes change in another, we call the first variable the explanatory variable. The affected variable is called the response variable. In a randomized experiment, the researcher manipulates values of the explanatory variable and measures the resulting changes in the response variable. The different values of the explanatory variable are called treatments. An experimental unit is a single object or individual to be measured.

You want to investigate the effectiveness of vitamin E in preventing disease. You recruit a group of subjects and ask them if they regularly take vitamin E. You notice that the subjects who take vitamin E exhibit better health on average than those who do not. Does this prove that vitamin E is effective in disease prevention? It does not. There are many differences between the two groups compared in addition to vitamin E consumption. People who take vitamin E regularly often take other steps to improve their health: exercise, diet, other vitamin supplements, choosing not to smoke. Any one of these factors could be influencing health. As described, this study does not prove that vitamin E is the key to disease prevention.

Additional variables that can cloud a study are called lurking variables. In order to prove that the explanatory variable is causing a change in the response variable, it is necessary to isolate the explanatory variable. The researcher must design her experiment in such a way that there is only one difference between groups being compared: the planned treatments. This is accomplished by the random assignment of experimental units to treatment groups. When subjects are assigned treatments randomly, all of the potential lurking variables are spread equally among the groups. At this point the only difference between groups is the one imposed by the researcher. Different outcomes measured in the response variable, therefore, must be a direct result of the different treatments. In this way, an experiment can prove a cause-and-effect connection between the explanatory and response variables.

The power of suggestion can have an important influence on the outcome of an experiment. Studies have shown that the expectation of the study participant can be as important as the actual medication. In one study of performance-enhancing drugs, researchers noted:

Results showed that believing one had taken the substance resulted in [performance] times almost as fast as those associated with consuming the drug itself. In contrast, taking the drug without knowledge yielded no significant performance increment.1

When participation in a study prompts a physical response from a participant, it is difficult to isolate the effects of the explanatory variable. To counter the power of suggestion, researchers set aside one treatment group as a control group. This group is given a placebo treatment–a treatment that cannot influence the response variable. The control group helps researchers balance the effects of being in an experiment with the effects of the active treatments. Of course, if you are participating in a study and you know that you are receiving a pill which contains no actual medication, then the power of suggestion is no longer a factor. Blinding or masking in a randomized experiment preserves the power of suggestion. When a person involved in a research study is blinded, they do not know who is receiving the active treatment(s) and who is receiving the placebo treatment. A double-blind experiment is one in which both the subjects and the researchers involved with the subjects are blinded.

## Example 1.19

### Problem

Researchers want to investigate whether taking aspirin regularly reduces the risk of heart attack. Four hundred people between the ages of 50 and 84 are recruited as participants. The people are divided randomly into two groups: one group will take aspirin, and the other group will take a placebo. Each person takes one pill each day for three years, but they don't know whether they are taking aspirin or the placebo. At the end of the study, researchers count the number of people in each group who have had heart attacks.

Identify the following values for this study: population, sample, experimental units, explanatory variable, response variable, treatments.

## Try It 1.19

A study needs to be conducted of the effect of three medicines A, B, and C on the height of adults aged 30 to 45. 90 adults were selected randomly and divided into three equal groups. The first group was asked to take medicine A for 6 months. The second group was asked to take medicine B for 6 months. The third group was asked to take medicine C for 6 months. The average change in height in each group is calculated at the end of the study.

Identify the following values for this study: population, sample, experimental units, explanatory variables, response variable, treatments.

## Example 1.20

### Problem

The Smell & Taste Treatment and Research Foundation conducted a study to investigate whether smell can affect learning. Subjects completed mazes multiple times while wearing masks. They completed the pencil and paper mazes three times wearing floral-scented masks, and three times with unscented masks. Participants were assigned at random to wear the floral mask during the first three trials or during the last three trials. For each trial, researchers recorded the time it took to complete the maze and the subject’s impression of the mask’s scent: positive, negative, or neutral.

1. Describe the explanatory and response variables in this study.
2. What are the treatments?
3. Identify any lurking variables that could interfere with this study.
4. Is it possible to use blinding in this study?

## Try It 1.20

The Placebo Research Group conducted a study to find the extent of placebo effects. A group of men randomly selected were asked to take a test before and after taking a pill that induces a mild headache. The pill in half of the randomly selected men was replaced with a similar pill that has no effect. For each trial, researchers recorded the change in time men took to complete the tests before and after taking the pill.

1. Describe the explanatory and response variable in this study.
2. What are the treatments?
3. Identify any lurking variables that could interfere with this study.
4. Is it possible to use blinding in this study?

## Example 1.21

### Problem

A researcher wants to study the effects of birth order on personality. Explain why this study could not be conducted as a randomized experiment. What is the main problem in a study that cannot be designed as a randomized experiment?

## Try It 1.21

You are concerned about the effects of texting on driving performance. Design a study to test the response time of drivers while texting and while driving only. How many seconds does it take for a driver to respond when a leading car hits the brakes?

1. Describe the explanatory and response variables in the study.
2. What are the treatments?
3. What should you consider when selecting participants?
4. Your research partner wants to divide participants randomly into two groups: one to drive without distraction and one to text and drive simultaneously. Is this a good idea? Why or why not?
5. Identify any lurking variables that could interfere with this study.
6. How can blinding be used in this study?

## Ethics

The widespread misuse and misrepresentation of statistical information often gives the field a bad name. Some say that “numbers don’t lie,” but the people who use numbers to support their claims often do.

An investigation of famous social psychologist, Diederik Stapel, has led to the retraction of his articles from some of the world’s top journals including Journal of Experimental Social Psychology, Social Psychology, Basic and Applied Social Psychology, British Journal of Social Psychology, and the magazine Science. Diederik Stapel is a former professor at Tilburg University in the Netherlands. An extensive investigation involving three universities where Stapel has worked concluded that the psychologist is guilty of fraud on a colossal scale. Falsified data taints over 55 papers he authored and 10 Ph.D. dissertations that he supervised.

Stapel did not deny that his deceit was driven by ambition. But it was more complicated than that, he told me. He insisted that he loved social psychology but had been frustrated by the messiness of experimental data, which rarely led to clear conclusions. His lifelong obsession with elegance and order, he said, led him to concoct sexy results that journals found attractive. “It was a quest for aesthetics, for beauty—instead of the truth,” he said. He described his behavior as an addiction that drove him to carry out acts of increasingly daring fraud, like a junkie seeking a bigger and better high.2

The committee investigating Stapel concluded that he is guilty of several practices including:

• creating datasets, which largely confirmed the prior expectations,
• altering data in existing datasets,
• changing measuring instruments without reporting the change, and
• misrepresenting the number of experimental subjects.

Clearly, it is never acceptable to falsify data the way this researcher did. Sometimes, however, violations of ethics are not as easy to spot.

Researchers have a responsibility to verify that proper methods are being followed. The report describing the investigation of Stapel’s fraud states that, “statistical flaws frequently revealed a lack of familiarity with elementary statistics.”3 Many of Stapel’s co-authors should have spotted irregularities in his data. Unfortunately, they did not know very much about statistical analysis, and they simply trusted that he was collecting and reporting data properly.

Many types of statistical fraud are difficult to spot. Some researchers simply stop collecting data once they have just enough to prove what they had hoped to prove. They don’t want to take the chance that a more extensive study would complicate their lives by producing data contradicting their hypothesis.

Professional organizations, like the American Statistical Association, clearly define expectations for researchers. There are even laws in the federal code about the use of research data.

When a statistical study uses human participants, as in medical studies, both ethics and the law dictate that researchers should be mindful of the safety of their research subjects. The U.S. Department of Health and Human Services oversees federal regulations of research studies with the aim of protecting participants. When a university or other research institution engages in research, it must ensure the safety of all human subjects. For this reason, research institutions establish oversight committees known as Institutional Review Boards (IRB). All planned studies must be approved in advance by the IRB. Key protections that are mandated by law include the following:

• Risks to participants must be minimized and reasonable with respect to projected benefits.
• Participants must give informed consent. This means that the risks of participation must be clearly explained to the subjects of the study. Subjects must consent in writing, and researchers are required to keep documentation of their consent.
• Data collected from individuals must be guarded carefully to protect their privacy.

These ideas may seem fundamental, but they can be very difficult to verify in practice. Is removing a participant’s name from the data record sufficient to protect privacy? Perhaps the person’s identity could be discovered from the data that remains. What happens if the study does not proceed as planned and risks arise that were not anticipated? When is informed consent really necessary? Suppose your doctor wants a blood sample to check your cholesterol level. Once the sample has been tested, you expect the lab to dispose of the remaining blood. At that point the blood becomes biological waste. Does a researcher have the right to take it for use in a study?

It is important that students of statistics take time to consider the ethical questions that arise in statistical studies. How prevalent is fraud in statistical studies? You might be surprised—and disappointed. There is a website dedicated to cataloging retractions of study articles that have been proven fraudulent. A quick glance will show that the misuse of statistics is a bigger problem than most people realize.

Vigilance against fraud requires knowledge. Learning the basic theory of statistics will empower you to analyze statistical studies critically.

## Example 1.22

### Problem

Describe the unethical behavior in each example and describe how it could impact the reliability of the resulting data. Explain how the problem should be corrected.

A researcher is collecting data in a community.

1. The researcher selects a block where they are comfortable walking because they know many of the people living on the street.
2. No one seems to be home at four houses on the route. They do not record the addresses and do not return at a later time to try to find residents at home.
3. The researcher skips four houses on the route because they are running late for an appointment. When they get home, they fill in the forms by selecting random answers from other residents in the neighborhood.

## Try It 1.22

Describe the unethical behavior, if any, in each example and describe how it could impact the reliability of the resulting data. Explain how the problem should be corrected.

A study is commissioned to determine the favorite brand of fruit juice among teens in California.

1. The survey is commissioned by the seller of a popular brand of apple juice.
2. There are only two types of juice included in the study: apple juice and cranberry juice.
3. Researchers allow participants to see the brand of juice as samples are poured for a taste test.
4. Twenty-five percent of participants prefer Brand X, 33% prefer Brand Y and 42% have no preference between the two brands. Brand X references the study in a commercial saying “Most teens like Brand X as much as or more than Brand Y.”

### Footnotes

• 1McClung, M. Collins, D. “Because I know it will!”: placebo effects of an ergogenic aid on athletic performance. Journal of Sport & Exercise Psychology. 2007 Jun. 29(3):382-94. Web. April 30, 2013.
• 2 Yudhijit Bhattacharjee, “The Mind of a Con Man,” Magazine, New York Times, April 26, 2013. Available online at: http://www.nytimes.com/2013/04/28/magazine/diederik-stapels-audacious-academic-fraud.html?src=dayp&_r=2& (accessed May 1, 2013).
• 3“Flawed Science: The Fraudulent Research Practices of Social Psychologist Diederik Stapel,” Tillburg University, November 28, 2012, http://www.tilburguniversity.edu/upload/064a10cd-bce5-4385-b9ff-05b840caeae6_120695_Rapp_nov_2012_UK_web.pdf (accessed May 1, 2013).