Przejdź do treściPrzejdź do informacji o dostępności
Logo OpenStax
  1. Przedmowa
  2. Mechanika
    1. 1 Jednostki i miary
      1. Wstęp
      2. 1.1 Zakres stosowalności praw fizyki
      3. 1.2 Układy jednostek miar
      4. 1.3 Konwersja jednostek
      5. 1.4 Analiza wymiarowa
      6. 1.5 Szacowanie i pytania Fermiego
      7. 1.6 Cyfry znaczące
      8. 1.7 Rozwiązywanie zadań z zakresu fizyki
      9. Podsumowanie rozdziału
        1. Kluczowe pojęcia
        2. Najważniejsze wzory
        3. Podsumowanie
        4. Pytania
        5. Zadania
        6. Zadania dodatkowe
        7. Zadania trudniejsze
    2. 2 Wektory
      1. Wstęp
      2. 2.1 Skalary i wektory
      3. 2.2 Układy współrzędnych i składowe wektora
      4. 2.3 Działania na wektorach
      5. 2.4 Mnożenie wektorów
      6. Podsumowanie rozdziału
        1. Kluczowe pojęcia
        2. Najważniejsze wzory
        3. Podsumowanie
        4. Pytania
        5. Zadania
        6. Zadania dodatkowe
        7. Zadania trudniejsze
    3. 3 Ruch prostoliniowy
      1. Wstęp
      2. 3.1 Położenie, przemieszczenie, prędkość średnia
      3. 3.2 Prędkość chwilowa i szybkość średnia
      4. 3.3 Przyspieszenie średnie i chwilowe
      5. 3.4 Ruch ze stałym przyspieszeniem
      6. 3.5 Spadek swobodny i rzut pionowy
      7. 3.6 Wyznaczanie równań ruchu metodą całkowania
      8. Podsumowanie rozdziału
        1. Kluczowe pojęcia
        2. Najważniejsze wzory
        3. Podsumowanie
        4. Pytania
        5. Zadania
        6. Zadania dodatkowe
        7. Zadania trudniejsze
    4. 4 Ruch w dwóch i trzech wymiarach
      1. Wstęp
      2. 4.1 Przemieszczenie i prędkość
      3. 4.2 Przyspieszenie
      4. 4.3 Rzuty
      5. 4.4 Ruch po okręgu
      6. 4.5 Ruch względny w jednym i dwóch wymiarach
      7. Podsumowanie rozdziału
        1. Kluczowe pojęcia
        2. Najważniejsze wzory
        3. Podsumowanie
        4. Pytania
        5. Zadania
        6. Zadania dodatkowe
        7. Zadania trudniejsze
    5. 5 Zasady dynamiki Newtona
      1. Wstęp
      2. 5.1 Pojęcie siły
      3. 5.2 Pierwsza zasada dynamiki Newtona
      4. 5.3 Druga zasada dynamiki Newtona
      5. 5.4 Masa i ciężar ciała
      6. 5.5 Trzecia zasada dynamiki Newtona
      7. 5.6 Rodzaje sił
      8. 5.7 Rozkłady sił działających na ciała
      9. Podsumowanie rozdziału
        1. Kluczowe pojęcia
        2. Najważniejsze wzory
        3. Podsumowanie
        4. Pytania
        5. Zadania
        6. Zadania dodatkowe
        7. Zadania trudniejsze
    6. 6 Zastosowania zasad dynamiki Newtona
      1. Wstęp
      2. 6.1 Rozwiązywanie zadań związanych z zasadami dynamiki Newtona
      3. 6.2 Tarcie
      4. 6.3 Siła dośrodkowa
      5. 6.4 Siła oporu i prędkość graniczna
      6. Podsumowanie rozdziału
        1. Kluczowe pojęcia
        2. Najważniejsze wzory
        3. Podsumowanie
        4. Pytania
        5. Zadania
        6. Zadania dodatkowe
        7. Zadania trudniejsze
    7. 7 Praca i energia kinetyczna
      1. Wstęp
      2. 7.1 Praca
      3. 7.2 Energia kinetyczna
      4. 7.3 Zasada zachowania energii mechanicznej
      5. 7.4 Moc
      6. Podsumowanie rozdziału
        1. Kluczowe pojęcia
        2. Najważniejsze wzory
        3. Podsumowanie
        4. Pytania
        5. Zadania
        6. Zadania dodatkowe
        7. Zadania trudniejsze
    8. 8 Energia potencjalna i zasada zachowania energii
      1. Wstęp
      2. 8.1 Energia potencjalna układu
      3. 8.2 Siły zachowawcze i niezachowawcze
      4. 8.3 Zasada zachowania energii
      5. 8.4 Wykresy energii potencjalnej
      6. 8.5 Źródła energii
      7. Podsumowanie rozdziału
        1. Kluczowe pojęcia
        2. Najważniejsze wzory
        3. Podsumowanie
        4. Pytania
        5. Zadania
        6. Zadania dodatkowe
    9. 9 Pęd i zderzenia
      1. Wstęp
      2. 9.1 Pęd
      3. 9.2 Popęd siły i zderzenia
      4. 9.3 Zasada zachowania pędu
      5. 9.4 Rodzaje zderzeń
      6. 9.5 Zderzenia w wielu wymiarach
      7. 9.6 Środek masy
      8. 9.7 Napęd rakietowy
      9. Podsumowanie rozdziału
        1. Kluczowe pojęcia
        2. Najważniejsze wzory
        3. Podsumowanie
        4. Pytania
        5. Zadania
        6. Zadania dodatkowe
        7. Zadania trudniejsze
    10. 10 Obroty wokół stałej osi
      1. Wstęp
      2. 10.1 Zmienne opisujące ruch obrotowy
      3. 10.2 Obroty ze stałym przyspieszeniem kątowym
      4. 10.3 Związek między wielkościami w ruchach obrotowym i postępowym
      5. 10.4 Moment bezwładności i energia kinetyczna w ruchu obrotowym
      6. 10.5 Obliczanie momentu bezwładności
      7. 10.6 Moment siły
      8. 10.7 Druga zasada dynamiki dla ruchu obrotowego
      9. 10.8 Praca i energia kinetyczna w ruchu obrotowym
      10. Podsumowanie rozdziału
        1. Kluczowe pojęcia
        2. Najważniejsze wzory
        3. Podsumowanie
        4. Pytania
        5. Zadania
        6. Zadania dodatkowe
        7. Zadania trudniejsze
    11. 11 Moment pędu
      1. Wstęp
      2. 11.1 Toczenie się ciał
      3. 11.2 Moment pędu
      4. 11.3 Zasada zachowania momentu pędu
      5. 11.4 Precesja żyroskopu
      6. Podsumowanie rozdziału
        1. Kluczowe pojęcia
        2. Najważniejsze wzory
        3. Podsumowanie
        4. Pytania
        5. Zadania
        6. Zadania dodatkowe
        7. Zadania trudniejsze
    12. 12 Równowaga statyczna i sprężystość
      1. Wstęp
      2. 12.1 Warunki równowagi statycznej
      3. 12.2 Przykłady równowagi statycznej
      4. 12.3 Naprężenie, odkształcenie i moduł sprężystości
      5. 12.4 Sprężystość i plastyczność
      6. Podsumowanie rozdziału
        1. Kluczowe pojęcia
        2. Najważniejsze wzory
        3. Podsumowanie
        4. Pytania
        5. Zadania
        6. Zadania dodatkowe
        7. Zadania trudniejsze
    13. 13 Grawitacja
      1. Wstęp
      2. 13.1 Prawo powszechnego ciążenia
      3. 13.2 Grawitacja przy powierzchni Ziemi
      4. 13.3 Energia potencjalna i całkowita pola grawitacyjnego
      5. 13.4 Orbity satelitów i ich energia
      6. 13.5 Prawa Keplera
      7. 13.6 Siły pływowe
      8. 13.7 Teoria grawitacji Einsteina
      9. Podsumowanie rozdziału
        1. Kluczowe pojęcia
        2. Najważniejsze wzory
        3. Podsumowanie
        4. Pytania
        5. Zadania
        6. Zadania dodatkowe
        7. Zadania trudniejsze
    14. 14 Mechanika płynów
      1. Wstęp
      2. 14.1 Płyny, gęstość i ciśnienie
      3. 14.2 Pomiar ciśnienia
      4. 14.3 Prawo Pascala i układy hydrauliczne
      5. 14.4 Prawo Archimedesa i siła wyporu
      6. 14.5 Dynamika płynów
      7. 14.6 Równanie Bernoulliego
      8. 14.7 Lepkość i turbulencje
      9. Podsumowanie rozdziału
        1. Kluczowe pojęcia
        2. Najważniejsze wzory
        3. Podsumowanie
        4. Pytania
        5. Zadania
        6. Zadania dodatkowe
        7. Zadania trudniejsze
  3. Fale i akustyka
    1. 15 Drgania
      1. Wstęp
      2. 15.1 Ruch harmoniczny
      3. 15.2 Energia w ruchu harmonicznym
      4. 15.3 Porównanie ruchu harmonicznego z ruchem jednostajnym po okręgu
      5. 15.4 Wahadła
      6. 15.5 Drgania tłumione
      7. 15.6 Drgania wymuszone
      8. Podsumowanie rozdziału
        1. Kluczowe pojęcia
        2. Najważniejsze wzory
        3. Podsumowanie
        4. Pytania
        5. Zadania
        6. Zadania dodatkowe
        7. Zadania trudniejsze
    2. 16 Fale
      1. Wstęp
      2. 16.1 Fale biegnące
      3. 16.2 Matematyczny opis fal
      4. 16.3 Prędkość fali na naprężonej strunie
      5. 16.4 Energia i moc fali
      6. 16.5 Interferencja fal
      7. 16.6 Fale stojące i rezonans
      8. Podsumowanie rozdziału
        1. Kluczowe pojęcia
        2. Najważniejsze wzory
        3. Podsumowanie
        4. Pytania
        5. Zadania
        6. Zadania dodatkowe
        7. Zadania trudniejsze
    3. 17 Dźwięk
      1. Wstęp
      2. 17.1 Fale dźwiękowe
      3. 17.2 Prędkość dźwięku
      4. 17.3 Natężenie dźwięku
      5. 17.4 Tryby drgań fali stojącej
      6. 17.5 Źródła dźwięków muzycznych
      7. 17.6 Dudnienia
      8. 17.7 Efekt Dopplera
      9. 17.8 Fale uderzeniowe
      10. Podsumowanie rozdziału
        1. Kluczowe pojęcia
        2. Najważniejsze wzory
        3. Podsumowanie
        4. Pytania
        5. Zadania
        6. Zadania dodatkowe
        7. Zadania trudniejsze
  4. A Jednostki
  5. B Przeliczanie jednostek
  6. C Najważniejsze stałe fizyczne
  7. D Dane astronomiczne
  8. E Wzory matematyczne
  9. F Układ okresowy pierwiastków
  10. G Alfabet grecki
  11. Rozwiązania zadań
    1. Rozdział 1
    2. Rozdział 2
    3. Rozdział 3
    4. Rozdział 4
    5. Rozdział 5
    6. Rozdział 6
    7. Rozdział 7
    8. Rozdział 8
    9. Rozdział 9
    10. Rozdział 10
    11. Rozdział 11
    12. Rozdział 12
    13. Rozdział 13
    14. Rozdział 14
    15. Rozdział 15
    16. Rozdział 16
    17. Rozdział 17
  12. Skorowidz nazwisk
  13. Skorowidz rzeczowy
  14. Skorowidz terminów obcojęzycznych

Podsumowanie

15.1 Ruch harmoniczny

  • Ruch periodyczny to powtarzające się drgania. Czas wykonania jednego pełnego drgnienia to okres T T, liczba drgań na jednostkę czasu definiuje zaś częstotliwość f f. Obie wielkości są związane relacją f = 1 T f = 1 T .
  • Ruch harmoniczny jest ruchem drgającym układu, w którym siła zwrotna zmienia się wraz z przemieszczeniem i działa w kierunku do niego przeciwnym.
  • Maksymalne przemieszczenie to amplituda A A. Dla oscylatora harmonicznego częstość kołowa ω ω, okres drgań T T i ich częstotliwość f f są odpowiednio określone wzorami ω = k / m ω= k / m , T = 2 π m / k T=2π m / k i f = k / m / ( 2 π ) f= k / m /(2π), gdzie m m jest masą klocka a k k – współczynnikiem sprężystości sprężyny.
  • W oscylatorze harmonicznym przemieszczenie jest funkcją czasu określoną wzorem x ( t ) = A cos ( 2 π t / T + ϕ ) = A cos ( ω t + ϕ ) x(t)=Acos(2πt/T+ϕ)=Acos(ωt+ϕ).
  • Prędkość jest wyrażona relacją v ( t ) = A ω sin ( ω t + ϕ ) = v max sin ( ω t + ϕ ) , v ( t ) = A ω sin ( ω t + ϕ ) = v max sin ( ω t + ϕ ) , gdzie v m a x = A ω = A k / m v m a x =Aω=A k / m .
  • Przyspieszenie określa wzór a ( t ) = A ω 2 cos ( ω t + ϕ ) = a max cos ( ω t + ϕ ) a ( t ) = A ω 2 cos ( ω t + ϕ ) = a max cos ( ω t + ϕ ) , gdzie a m a x = A ω 2 = A k / m a m a x =A ω 2 =Ak/m.

15.2 Energia w ruchu harmonicznym

  • Najprostszy rodzaj drgań dotyczy układów, które można opisać prawem Hooke’a: F = k x F=kx, gdzie F F jest siłą zwrotną, x x jest przemieszczeniem z położenia równowagi lub deformacją, a k k jest współczynnikiem sprężystości układu.
  • W układzie opisywanym prawem Hooke’a energia potencjalna ciała odkształconego sprężyście wynosi E p s p r = k x 2 / 2 E p s p r =k x 2 /2.
  • Energia całkowita w oscylatorze harmonicznym jest stała w czasie i dzielona pomiędzy energię potencjalną sprężystości i energię kinetyczną:
    E całkowita = 1 2 k x 2 + 1 2 m v 2 = 1 2 k A 2 = const . E całkowita = 1 2 k x 2 + 1 2 m v 2 = 1 2 k A 2 =const.
  • Wartość prędkości jako funkcję położenia dla oscylatora harmonicznego określa zależność:
    | v | = k m ( A 2 x 2 ) | v | = k m ( A 2 x 2 )

15.3 Porównanie ruchu harmonicznego z ruchem jednostajnym po okręgu

  • Rozważ dysk o promieniu A A poruszający się ze stałą prędkością kątową ω ω. Punkt na krawędzi dysku porusza się ze stałą prędkością styczną v max = A ω v max = A ω . Rzut promienia na oś x x opisuje wzór x ( t ) = A cos ( ω t + ϕ ) x ( t ) = A cos ( ω t + ϕ ) , gdzie ϕ ϕ jest przesunięciem fazowym. Z kolei składowa x x prędkości stycznej to v ( t ) = A ω sin ( ω t + ϕ ) v ( t ) = A ω sin ( ω t + ϕ ) .

15.4 Wahadła

  • Ciało o masie m m zawieszone na nieważkiej nici o długości d d tworzy wahadło matematyczne, którego drgania są ruchem harmonicznym przy amplitudzie kąta nie przekraczającej 15 15 . Okres drgań wahadła opisuje wzór T = 2 π d / g T=2π d / g , gdzie d d jest długością nici a g g – przyspieszeniem ziemskim.
  • Okres drgań wahadła fizycznego można wyznaczyć ze wzoru T = 2 π I / ( m g d ) T=2π I / ( m g d ) , jeśli znamy moment bezwładności. Odległość pomiędzy osią obrotu a środkiem masy wynosi L.
  • Okres drgań wahadła torsyjnego określa wzór T = 2 π I / κ T=2π I / κ , wymagana jest więc znajomość momentu bezwładności wahadła i momentu kierującego drutu.

15.5 Drgania tłumione

  • W oscylatorach harmonicznych tłumionych działają siły niezachowawcze, które powodują dyssypację energii.
  • Tłumienie krytyczne powoduje, że układ możliwie najszybciej, asymptotycznie wraca do położenia równowagi.
  • Układ drgający z tłumieniem podkrytycznym wykonuje drgania wokół położenia równowagi.
  • Układ z tłumieniem nadkrytycznym osiąga stan równowagi wolniej niż ten z tłumieniem krytycznym.

15.6 Drgania wymuszone

  • Częstotliwość własna układu to częstotliwość, w której układ oscyluje swobodnie, o ile nie działa na niego siła wymuszająca ani siły oporu ośrodka.
  • Rezonans w oscylatorze harmonicznym zachodzi pod wpływem periodycznej siły wymuszającej działającej z taką częstotliwością, jak częstotliwość rezonansowa układu. W tych warunkach obserwujemy drgania rezonansowe o dużej amplitudzie.
  • Amplituda drgań wymuszonych w pobliżu rezonansu jest tym wyższa, im słabsze jest tłumienie. Wzrost tłumienia układu powoduje poszerzenie krzywej amplitudowej w odpowiedzi na częstotliwość siły wymuszającej.
Cytowanie i udostępnianie

Chcesz zacytować, udostępnić albo zmodyfikować treść tej książki? Została ona wydana na licencji Creative Commons Attribution License , która wymaga od Ciebie uznania autorstwa OpenStax.

Cytowanie i udostępnienia
  • Jeśli rozpowszechniasz tę książkę w formie drukowanej, umieść na każdej jej kartce informację:
    Treści dostępne za darmo na https://openstax.org/books/fizyka-dla-szk%C3%B3%C5%82-wy%C5%BCszych-tom-1/pages/1-wstep
  • Jeśli rozpowszechniasz całą książkę lub jej fragment w formacie cyfrowym, na każdym widoku strony umieść informację:
    Treści dostępne za darmo na https://openstax.org/books/fizyka-dla-szk%C3%B3%C5%82-wy%C5%BCszych-tom-1/pages/1-wstep
Cytowanie

© 2 mar 2022 OpenStax. Treść książki została wytworzona przez OpenStax na licencji Creative Commons Attribution License . Nazwa OpenStax, logo OpenStax, okładki OpenStax, nazwa OpenStax CNX oraz OpenStax CNX logo nie podlegają licencji Creative Commons i wykorzystanie ich jest dozwolone wyłącznie na mocy uprzedniego pisemnego upoważnienia przez Rice University.