Omitir e ir al contenidoIr a la página de accesibilidadMenú de atajos de teclado
Logo de OpenStax
Cálculo volumen 2

Conceptos clave

Cálculo volumen 2Conceptos clave

Menú
Índice
  1. Prefacio
  2. 1 Integración
    1. Introducción
    2. 1.1 Aproximación de áreas
    3. 1.2 La integral definida
    4. 1.3 El teorema fundamental del cálculo
    5. 1.4 Fórmulas de integración y el teorema del cambio neto
    6. 1.5 Sustitución
    7. 1.6 Integrales con funciones exponenciales y logarítmicas
    8. 1.7 Integrales que resultan en funciones trigonométricas inversas
    9. Revisión del capítulo
      1. Términos clave
      2. Ecuaciones clave
      3. Conceptos clave
      4. Ejercicios de repaso
  3. 2 Aplicaciones de la integración
    1. Introducción
    2. 2.1 Áreas entre curvas
    3. 2.2 Determinar los volúmenes mediante el corte
    4. 2.3 Volúmenes de revolución: capas cilíndricas
    5. 2.4 Longitud del arco de una curva y superficie
    6. 2.5 Aplicaciones físicas
    7. 2.6 Momentos y centros de masa
    8. 2.7 Integrales, funciones exponenciales y logaritmos
    9. 2.8 Crecimiento y decaimiento exponencial
    10. 2.9 Cálculo de las funciones hiperbólicas
    11. Revisión del capítulo
      1. Términos clave
      2. Ecuaciones clave
      3. Conceptos clave
      4. Ejercicios de repaso
  4. 3 Técnicas de integración
    1. Introducción
    2. 3.1 Integración por partes
    3. 3.2 Integrales trigonométricas
    4. 3.3 Sustitución trigonométrica
    5. 3.4 Fracciones parciales
    6. 3.5 Otras estrategias de integración
    7. 3.6 Integración numérica
    8. 3.7 Integrales impropias
    9. Revisión del capítulo
      1. Términos clave
      2. Ecuaciones clave
      3. Conceptos clave
      4. Ejercicios de repaso
  5. 4 Introducción a las ecuaciones diferenciales
    1. Introducción
    2. 4.1 Fundamentos de las ecuaciones diferenciales
    3. 4.2 Campos de direcciones y métodos numéricos
    4. 4.3 Ecuaciones separables
    5. 4.4 La ecuación logística
    6. 4.5 Ecuaciones lineales de primer orden
    7. Revisión del capítulo
      1. Términos clave
      2. Ecuaciones clave
      3. Conceptos clave
      4. Ejercicios de repaso
  6. 5 Secuencias y series
    1. Introducción
    2. 5.1 Secuencias
    3. 5.2 Serie infinita
    4. 5.3 Las pruebas de divergencia e integral
    5. 5.4 Pruebas de comparación
    6. 5.5 Series alternadas
    7. 5.6 Criterios del cociente y la raíz
    8. Revisión del capítulo
      1. Términos clave
      2. Ecuaciones clave
      3. Conceptos clave
      4. Ejercicios de repaso
  7. 6 Serie de potencias
    1. Introducción
    2. 6.1 Series y funciones de potencia
    3. 6.2 Propiedades de las series de potencia
    4. 6.3 Series de Taylor y Maclaurin
    5. 6.4 Trabajar con la serie de Taylor
    6. Revisión del capítulo
      1. Términos clave
      2. Ecuaciones clave
      3. Conceptos clave
      4. Ejercicios de repaso
  8. 7 Ecuaciones paramétricas y coordenadas polares
    1. Introducción
    2. 7.1 Ecuaciones paramétricas
    3. 7.2 Cálculo de curvas paramétricas
    4. 7.3 Coordenadas polares
    5. 7.4 Área y longitud de arco en coordenadas polares
    6. 7.5 Secciones cónicas
    7. Revisión del capítulo
      1. Términos clave
      2. Ecuaciones clave
      3. Conceptos clave
      4. Ejercicios de repaso
  9. A Tabla de integrales
  10. B Tabla de derivadas
  11. C Repaso de Precálculo
  12. Clave de respuestas
    1. Capítulo 1
    2. Capítulo 2
    3. Capítulo 3
    4. Capítulo 4
    5. Capítulo 5
    6. Capítulo 6
    7. Capítulo 7
  13. Índice

Conceptos clave

4.1 Fundamentos de las ecuaciones diferenciales

  • Una ecuación diferencial es una ecuación que implica una función y=f(x)y=f(x) y una o varias de sus derivadas. Una solución es una función y=f(x)y=f(x) que satisface la ecuación diferencial cuando ff y sus derivadas se sustituyen en la ecuación.
  • El orden de una ecuación diferencial es el mayor orden de cualquier derivada de la función desconocida que aparece en la ecuación.
  • Una ecuación diferencial acoplada a un valor inicial se denomina problema de valor inicial. Para resolver un problema de valor inicial, primero hay que hallar la solución general de la ecuación diferencial y luego determinar el valor de la constante. Los problemas de valor inicial tienen muchas aplicaciones en la ciencia y la ingeniería.

4.2 Campos de direcciones y métodos numéricos

  • Un campo de direcciones es un objeto matemático utilizado para representar gráficamente las soluciones de una ecuación diferencial de primer orden.
  • El método de Euler es una técnica numérica que puede utilizarse para aproximar soluciones a una ecuación diferencial.

4.3 Ecuaciones separables

  • Una ecuación diferencial separable es cualquier ecuación que puede escribirse en la forma y=f(x)g(y).y=f(x)g(y).
  • El método de separación de variables se utiliza para hallar la solución general de una ecuación diferencial separable.

4.4 La ecuación logística

  • Cuando se estudian las funciones de la población, diferentes supuestos (como el crecimiento exponencial, el crecimiento logístico o el umbral de población) conducen a diferentes tasas de crecimiento.
  • La ecuación diferencial logística incorpora el concepto de capacidad de carga. Este valor es un valor límite de la población para un ambiente determinado.
  • La ecuación diferencial logística puede resolverse para cualquier tasa de crecimiento positiva, población inicial y capacidad de carga.

4.5 Ecuaciones lineales de primer orden

  • Cualquier ecuación diferencial lineal de primer orden puede escribirse en la forma y+p(x)y=q(x).y+p(x)y=q(x).
  • Podemos utilizar una estrategia de resolución de problemas en cinco pasos para resolver una ecuación diferencial lineal de primer orden que puede o no incluir un valor inicial.
  • Las aplicaciones de las ecuaciones diferenciales lineales de primer orden incluyen determinar el movimiento de un objeto que se eleva o cae con resistencia del aire y calcular la corriente en un circuito eléctrico.
Solicitar una copia impresa

As an Amazon Associate we earn from qualifying purchases.

Cita/Atribución

¿Desea citar, compartir o modificar este libro? Este libro utiliza la Creative Commons Attribution-NonCommercial-ShareAlike License y debe atribuir a OpenStax.

Información de atribución
  • Si redistribuye todo o parte de este libro en formato impreso, debe incluir en cada página física la siguiente atribución:
    Acceso gratis en https://openstax.org/books/c%C3%A1lculo-volumen-2/pages/1-introduccion
  • Si redistribuye todo o parte de este libro en formato digital, debe incluir en cada vista de la página digital la siguiente atribución:
    Acceso gratuito en https://openstax.org/books/c%C3%A1lculo-volumen-2/pages/1-introduccion
Información sobre citas

© 2 mar. 2022 OpenStax. El contenido de los libros de texto que produce OpenStax tiene una licencia de Creative Commons Attribution-NonCommercial-ShareAlike License . El nombre de OpenStax, el logotipo de OpenStax, las portadas de libros de OpenStax, el nombre de OpenStax CNX y el logotipo de OpenStax CNX no están sujetos a la licencia de Creative Commons y no se pueden reproducir sin el previo y expreso consentimiento por escrito de Rice University.