Omitir e ir al contenidoIr a la página de accesibilidadMenú de atajos de teclado
Logo de OpenStax

4.1 Distribución hipergeométrica

h(x) = A x NA nx Nnh(x)= A x NA nx Nn

4.2 Distribución binomial

X ~ B(n, p) significa que la variable aleatoria discreta X tiene una distribución de probabilidad binomial con n ensayos y probabilidad de acierto p.

X = el número de aciertos en n ensayos independientes

n = el número de ensayos independientes

X toma los valores x = 0, 1, 2, 3, ..., n

p = la probabilidad de acierto de cualquier ensayo

q = la probabilidad de fallo de cualquier ensayo

p + q = 1

q = 1 – p

La media de X es μ = np. La desviación típica de X es σ = npq npq .

P(x)=n!x!(nx)!·pxq(nx)P(x)=n!x!(nx)!·pxq(nx)

donde P(X) es la probabilidad de X éxitos en n ensayos cuando la probabilidad de un éxito en CUALQUIER OTRO ENSAYO es p.

4.3 Distribución geométrica

P(X=x)=p(1p)x1P(X=x)=p(1p)x1

X ~ G(p) significa que la variable aleatoria discreta X tiene una distribución de probabilidad geométrica con probabilidad de acierto en un único ensayo p.

X = el número de ensayos independientes hasta el primer acierto

X toma los valores x = 1, 2, 3, ...

p = la probabilidad de acierto de cualquier ensayo

q = la probabilidad de fallo para cualquier ensayo p + q = 1
q = 1 – p

La media es μ = 1 p 1 p .

La desviación típica es σ = 1  p p 2 1  p p 2 = 1 p ( 1 p 1 ) 1 p ( 1 p 1 ) .

4.4 Distribución de Poisson

X ~ P(μ) significa que X tiene una distribución de probabilidad de Poisson donde X = el número de ocurrencias en el intervalo de interés.

X toma los valores x = 0, 1, 2, 3, ...

Se suele dar la media μ o λ.

La varianza es σ2 = μ, y la desviación típica es
σ =  μ σ =  μ .

Cuando se utiliza P(μ) para aproximar una distribución binomial, μ = np donde n representa el número de ensayos independientes y p representa la probabilidad de aciertos en un solo ensayo.

P(x)=μxeμx!P(x)=μxeμx!
Cita/Atribución

Este libro no puede ser utilizado en la formación de grandes modelos de lenguaje ni incorporado de otra manera en grandes modelos de lenguaje u ofertas de IA generativa sin el permiso de OpenStax.

¿Desea citar, compartir o modificar este libro? Este libro utiliza la Creative Commons Attribution License y debe atribuir a OpenStax.

Información de atribución
  • Si redistribuye todo o parte de este libro en formato impreso, debe incluir en cada página física la siguiente atribución:
    Acceso gratis en https://openstax.org/books/introducci%C3%B3n-estad%C3%ADstica-empresarial/pages/1-introduccion
  • Si redistribuye todo o parte de este libro en formato digital, debe incluir en cada vista de la página digital la siguiente atribución:
    Acceso gratuito en https://openstax.org/books/introducci%C3%B3n-estad%C3%ADstica-empresarial/pages/1-introduccion
Información sobre citas

© 28 ene. 2022 OpenStax. El contenido de los libros de texto que produce OpenStax tiene una licencia de Creative Commons Attribution License . El nombre de OpenStax, el logotipo de OpenStax, las portadas de libros de OpenStax, el nombre de OpenStax CNX y el logotipo de OpenStax CNX no están sujetos a la licencia de Creative Commons y no se pueden reproducir sin el previo y expreso consentimiento por escrito de Rice University.