Omitir e ir al contenidoIr a la página de accesibilidadMenú de atajos de teclado
Logo de OpenStax

Índice
  1. Prefacio
  2. 1 Muestreo y datos
    1. Introducción
    2. 1.1 Definiciones de estadística, probabilidad y términos clave
    3. 1.2 Datos, muestreo y variación de datos y muestreo
    4. 1.3 Niveles de medición
    5. 1.4 Diseño experimental y ética
    6. Términos clave
    7. Repaso del capítulo
    8. Tarea para la casa
    9. Referencias
    10. Soluciones
  3. 2 Estadística descriptiva
    1. Introducción
    2. 2.1 Datos mostrados
    3. 2.2 Medidas de la ubicación de los datos
    4. 2.3 Medidas del centro de los datos
    5. 2.4 Notación sigma y cálculo de la media aritmética
    6. 2.5 Media geométrica
    7. 2.6 Distorsión y media, mediana y moda
    8. 2.7 Medidas de la dispersión de los datos
    9. Términos clave
    10. Repaso del capítulo
    11. Repaso de fórmulas
    12. Práctica
    13. Tarea para la casa
    14. Resúmalo todo: tarea para la casa
    15. Referencias
    16. Soluciones
  4. 3 Temas de probabilidad
    1. Introducción
    2. 3.1 Terminología
    3. 3.2 Eventos mutuamente excluyentes e independientes
    4. 3.3 Dos reglas básicas de la probabilidad
    5. 3.4 Tablas de contingencia y árboles de probabilidad
    6. 3.5 Diagramas de Venn
    7. Términos clave
    8. Repaso del capítulo
    9. Repaso de fórmulas
    10. Práctica
    11. Uniéndolo todo: Práctica
    12. Tarea para la casa
    13. Resúmalo todo: tarea para la casa
    14. Referencias
    15. Soluciones
  5. 4 Variables aleatorias discretas
    1. Introducción
    2. 4.1 Distribución hipergeométrica
    3. 4.2 Distribución binomial
    4. 4.3 Distribución geométrica
    5. 4.4 Distribución de Poisson
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  6. 5 Variables aleatorias continuas
    1. Introducción
    2. 5.1 Propiedades de las funciones de densidad de probabilidad continuas
    3. 5.2 La distribución uniforme
    4. 5.3 La distribución exponencial
    5. Términos clave
    6. Repaso del capítulo
    7. Repaso de fórmulas
    8. Práctica
    9. Tarea para la casa
    10. Referencias
    11. Soluciones
  7. 6 La distribución normal
    1. Introducción
    2. 6.1 La distribución normal estándar
    3. 6.2 Uso de la distribución normal
    4. 6.3 Estimación de la binomial con la distribución normal
    5. Términos clave
    6. Repaso del capítulo
    7. Repaso de fórmulas
    8. Práctica
    9. Tarea para la casa
    10. Referencias
    11. Soluciones
  8. 7 El teorema del límite central
    1. Introducción
    2. 7.1 Teorema del límite central de las medias muestrales
    3. 7.2 Uso del teorema del límite central
    4. 7.3 Teorema del límite central de las proporciones
    5. 7.4 Factor de corrección de población finita
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  9. 8 Intervalos de confianza
    1. Introducción
    2. 8.1 Un intervalo de confianza para una desviación típica de la población, con un tamaño de muestra conocido o grande
    3. 8.2 Un intervalo de confianza para una desviación típica de población desconocida, caso de una muestra pequeña
    4. 8.3 Un intervalo de confianza para una proporción de población
    5. 8.4 Cálculo del tamaño de la muestra n: variables aleatorias continuas y binarias
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  10. 9 Pruebas de hipótesis con una muestra
    1. Introducción
    2. 9.1 Hipótesis nula y alternativa
    3. 9.2 Resultados y errores de tipo I y II
    4. 9.3 Distribución necesaria para la comprobación de la hipótesis
    5. 9.4 Ejemplos de pruebas de hipótesis completas
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  11. 10 Pruebas de hipótesis con dos muestras
    1. Introducción
    2. 10.1 Comparación de las medias de dos poblaciones independientes
    3. 10.2 Criterios de Cohen para efectos de tamaño pequeño, mediano y grande
    4. 10.3 Prueba de diferencias de medias: suponer varianzas de población iguales
    5. 10.4 Comparación de dos proporciones de población independientes
    6. 10.5 Dos medias poblacionales con desviaciones típicas conocidas
    7. 10.6 Muestras coincidentes o emparejadas
    8. Términos clave
    9. Repaso del capítulo
    10. Repaso de fórmulas
    11. Práctica
    12. Tarea para la casa
    13. Resúmalo todo: tarea para la casa
    14. Referencias
    15. Soluciones
  12. 11 La distribución chi-cuadrado
    1. Introducción
    2. 11.1 Datos sobre la distribución chi-cuadrado
    3. 11.2 Prueba de una sola varianza
    4. 11.3 Prueba de bondad de ajuste
    5. 11.4 Prueba de independencia
    6. 11.5 Prueba de homogeneidad
    7. 11.6 Comparación de las pruebas chi-cuadrado
    8. Términos clave
    9. Repaso del capítulo
    10. Repaso de fórmulas
    11. Práctica
    12. Tarea para la casa
    13. Resúmalo todo: tarea para la casa
    14. Referencias
    15. Soluciones
  13. 12 La distribución F y el anova de una vía
    1. Introducción
    2. 12.1 Prueba de dos varianzas
    3. 12.2 ANOVA de una vía
    4. 12.3 La distribución F y el cociente F
    5. 12.4 Datos sobre la distribución F
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  14. 13 Regresión lineal y correlación
    1. Introducción
    2. 13.1 El coeficiente de correlación r
    3. 13.2 Comprobación de la importancia del coeficiente de correlación
    4. 13.3 Ecuaciones lineales
    5. 13.4 La ecuación de regresión
    6. 13.5 Interpretación de los coeficientes de regresión: elasticidad y transformación logarítmica
    7. 13.6 Predicción con una ecuación de regresión
    8. 13.7 Cómo utilizar Microsoft Excel® para el análisis de regresión
    9. Términos clave
    10. Repaso del capítulo
    11. Práctica
    12. Soluciones
  15. A Cuadros estadísticos
  16. B Oraciones, símbolos y fórmulas matemáticas
  17. Índice

Use la siguiente información para responder los próximos cinco ejercicios: Una compañía quiere evaluar su tasa de deserción, es decir, el tiempo que los nuevos empleados permanecen en la compañía. A lo largo de los años han establecido la siguiente distribución de probabilidad.

Supongamos que X = el número de años que un nuevo empleado permanecerá en la compañía.

Supongamos que P(x) = la probabilidad de que un nuevo empleado permanezca en la compañía x años.

1.

Complete la Tabla 4.1 con los datos proporcionados.

xP(x)
00,12
10,18
20,30
30,15
4
50,10
60,05
Tabla 4.1
2.

P(x = 4) = _______

3.

P(x ≥ 5) = _______

4.

¿Cuánto tiempo en promedio espera que un nuevo empleado permanezca en la compañía?

5.

¿A cuánto asciende la columna “P(x)”?


Use la siguiente información para responder los próximos seis ejercicios: Un panadero está decidiendo cuántos lotes de muffins va a hacer para vender en su panadería. Quiere hacer lo suficiente para venderlos todos y no menos. Mediante la observación, el panadero ha establecido una distribución de probabilidad.

xP(x)
10,15
20,35
30,40
40,10
Tabla 4.2
6.

Defina la variable aleatoria X.

7.

¿Cuál es la probabilidad de que el panadero venda más de un lote? P(x > 1) = _______

8.

¿Cuál es la probabilidad de que el panadero venda exactamente un lote? P(x = 1) = _______

9.

En promedio, ¿cuántos lotes debe hacer el panadero?


Use la siguiente información para responder los próximos cuatro ejercicios: Ellen tiene práctica de música tres días a la semana. Practica los tres días el 85 % del tiempo, dos días el 8 % del tiempo, un día el 4 % del tiempo y ningún día el 3 % del tiempo. Se selecciona una semana al azar.

10.

Defina la variable aleatoria X.

11.

Construya una tabla de distribución de probabilidades para los datos.

12.

Sabemos que para que una función de distribución de probabilidad sea discreta, debe tener dos características. Una es que la suma de las probabilidades es uno. ¿Cuál es la otra característica?


Use la siguiente información para responder los próximos cinco ejercicios: Javier es voluntario en eventos comunitarios cada mes. No realiza más de cinco eventos en un mes. Asiste exactamente a cinco eventos el 35 % del tiempo, a cuatro el 25 % del tiempo, a tres el 20 % del tiempo, a dos el 10 % del tiempo, a uno el 5 % del tiempo y a ninguno el 5 % del tiempo.

13.

Defina la variable aleatoria X.

14.

¿Qué valores toma x?

15.

Construir una tabla de PDF.

16.

Calcule la probabilidad de que Javier sea voluntario en menos de tres eventos al mes. P(x < 3) = _______

17.

Calcule la probabilidad de que Javier sea voluntario en, al menos, un evento cada mes. P(x > 0) = _______

Use la siguiente información para responder los próximos cinco ejercicios: Supongamos que un grupo de estudiantes de Estadística se divide en dos grupos: estudiantes de especialidad en Negocios y estudiantes de especialidad que no son en Negocios. En el grupo hay 16 especialidades en Negocios y siete que no son en Negocios. Se toma una muestra aleatoria de nueve estudiantes. Nos interesa el número de especialidades en Negocios en la muestra.

18.

Defina la variable aleatoria X en palabras.

19.

¿Qué valores toma X?

Use la siguiente información para responder los próximos ocho ejercicios: El Instituto de Investigación de la Educación Superior de la Universidad de California en Los Ángeles (University of California, Los Angeles, UCLA) recopiló datos de 203.967 estudiantes de primer año a tiempo completo de 270 institutos universitarios de cuatro años en EE. UU. El 71,3 % de esos estudiantes respondieron que sí, que creen que las parejas del mismo sexo deberían tener derecho a un estado civil legal. Supongamos que elige al azar a ocho estudiantes de primer año a tiempo completo de la encuesta. Le interesa saber el número de personas que creen que las parejas del mismo sexo deberían tener derecho a un estado civil legal.

20.

Defina la variable aleatoria X en palabras.

21.

X ~ _____(_____,_____)

22.

¿Qué valores toma la variable aleatoria X?

23.

Construya la Función de Distribución de Probabilidad (PDF).

x P(x)
Tabla 4.3
24.

En promedio (μ), ¿cuántos esperaría que respondieran afirmativamente?

25.

¿Cuál es la desviación típica (σ)?

26.

¿Cuál es la probabilidad de que, como máximo, cinco de los estudiantes de primer año respondan que “sí”?

27.

¿Cuál es la probabilidad de que, al menos, dos de los estudiantes de primer año respondan que “sí”?

Use la siguiente información para responder los próximos seis ejercicios: El Instituto de Investigación de la Educación Superior de la Universidad de California en Los Ángeles (University of California, Los Angeles, UCLA) recopiló datos de 203.967 estudiantes de primer año a tiempo completo de 270 institutos universitarios de cuatro años en EE. UU. El 71,3 % de esos estudiantes respondieron que sí, que creen que las parejas del mismo sexo deberían tener derecho a un estado civil legal. Supongamos que selecciona al azar a un estudiante de primer año del estudio hasta que halle uno que responda “sí”. Le interesa el número de estudiantes de primer año a los que debe preguntar.

28.

Defina la variable aleatoria X en palabras.

29.

X ~ _____(_____,_____)

30.

¿Qué valores toma la variable aleatoria X?

31.

Construya la Función de Distribución de Probabilidad (PDF). Deténgase en x = 6.

x P(x)
1
2
3
4
5
6
Tabla 4.4
32.

En promedio (μ), ¿a cuántos estudiantes de primer año tendría que preguntarles hasta hallar uno que responda “sí”?

33.

¿Cuál es la probabilidad de que tenga que preguntarles a menos de tres estudiantes de primer año?

Use la siguiente información para responder los próximos seis ejercicios: en promedio, una tienda de ropa recibe 120 clientes al día.

34.

Supongamos que el evento se produce de forma independiente en un día determinado. Defina la variable aleatoria X.

35.

¿Qué valores toma X?

36.

¿Cuál es la probabilidad de recibir 150 clientes en un día?

37.

¿Cuál es la probabilidad de recibir 35 clientes en las primeras cuatro horas? Supongamos que la tienda está abierta 12 horas al día.

38.

¿Cuál es la probabilidad de que la tienda reciba más de 12 clientes en la primera hora?

39.

¿Cuál es la probabilidad de que la tienda reciba menos de 12 clientes en las dos primeras horas?

40.

¿Qué tipo de distribución se puede utilizar para aproximar el modelo de Poisson? ¿Cuándo lo haría?


Use la siguiente información para responder los próximos seis ejercicios: en EE. UU. mueren un promedio de ocho adolescentes al día por accidentes de tráfico. Como consecuencia, los estados de todo el país están debatiendo el aumento de la edad para conducir.

41.

Supongamos que el evento se produce de forma independiente en un día determinado. Defina la variable aleatoria X en palabras.

42.

X ~ _____(_____,_____)

43.

¿Qué valores toma X?

44.

Para los valores dados de la variable aleatoria X, rellene las probabilidades correspondientes.

45.

¿Es probable que no haya ningún adolescente muerto por accidente de tráfico en un día determinado en EE. UU.? Justifique su respuesta numéricamente.

46.

¿Es probable que haya más de 20 adolescentes muertos por accidentes de tráfico en un día determinado en EE. UU.? Justifique su respuesta numéricamente.

Solicitar una copia impresa

As an Amazon Associate we earn from qualifying purchases.

Cita/Atribución

Este libro no puede ser utilizado en la formación de grandes modelos de lenguaje ni incorporado de otra manera en grandes modelos de lenguaje u ofertas de IA generativa sin el permiso de OpenStax.

¿Desea citar, compartir o modificar este libro? Este libro utiliza la Creative Commons Attribution License y debe atribuir a OpenStax.

Información de atribución
  • Si redistribuye todo o parte de este libro en formato impreso, debe incluir en cada página física la siguiente atribución:
    Acceso gratis en https://openstax.org/books/introducci%C3%B3n-estad%C3%ADstica-empresarial/pages/1-introduccion
  • Si redistribuye todo o parte de este libro en formato digital, debe incluir en cada vista de la página digital la siguiente atribución:
    Acceso gratuito en https://openstax.org/books/introducci%C3%B3n-estad%C3%ADstica-empresarial/pages/1-introduccion
Información sobre citas

© 28 ene. 2022 OpenStax. El contenido de los libros de texto que produce OpenStax tiene una licencia de Creative Commons Attribution License . El nombre de OpenStax, el logotipo de OpenStax, las portadas de libros de OpenStax, el nombre de OpenStax CNX y el logotipo de OpenStax CNX no están sujetos a la licencia de Creative Commons y no se pueden reproducir sin el previo y expreso consentimiento por escrito de Rice University.