Omitir e ir al contenidoIr a la página de accesibilidadMenú de atajos de teclado
Logo de OpenStax
Introducción a la estadística empresarial

4.1 Distribución hipergeométrica

Introducción a la estadística empresarial4.1 Distribución hipergeométrica

Menú
Índice
  1. Prefacio
  2. 1 Muestreo y datos
    1. Introducción
    2. 1.1 Definiciones de estadística, probabilidad y términos clave
    3. 1.2 Datos, muestreo y variación de datos y muestreo
    4. 1.3 Niveles de medición
    5. 1.4 Diseño experimental y ética
    6. Términos clave
    7. Repaso del capítulo
    8. Tarea para la casa
    9. Referencias
    10. Soluciones
  3. 2 Estadística descriptiva
    1. Introducción
    2. 2.1 Datos mostrados
    3. 2.2 Medidas de la ubicación de los datos
    4. 2.3 Medidas del centro de los datos
    5. 2.4 Notación sigma y cálculo de la media aritmética
    6. 2.5 Media geométrica
    7. 2.6 Distorsión y media, mediana y moda
    8. 2.7 Medidas de la dispersión de los datos
    9. Términos clave
    10. Repaso del capítulo
    11. Repaso de fórmulas
    12. Práctica
    13. Tarea para la casa
    14. Resúmalo todo: tarea para la casa
    15. Referencias
    16. Soluciones
  4. 3 Temas de probabilidad
    1. Introducción
    2. 3.1 Terminología
    3. 3.2 Eventos mutuamente excluyentes e independientes
    4. 3.3 Dos reglas básicas de la probabilidad
    5. 3.4 Tablas de contingencia y árboles de probabilidad
    6. 3.5 Diagramas de Venn
    7. Términos clave
    8. Repaso del capítulo
    9. Repaso de fórmulas
    10. Práctica
    11. Uniéndolo todo: Práctica
    12. Tarea para la casa
    13. Resúmalo todo: tarea para la casa
    14. Referencias
    15. Soluciones
  5. 4 Variables aleatorias discretas
    1. Introducción
    2. 4.1 Distribución hipergeométrica
    3. 4.2 Distribución binomial
    4. 4.3 Distribución geométrica
    5. 4.4 Distribución de Poisson
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  6. 5 Variables aleatorias continuas
    1. Introducción
    2. 5.1 Propiedades de las funciones de densidad de probabilidad continuas
    3. 5.2 La distribución uniforme
    4. 5.3 La distribución exponencial
    5. Términos clave
    6. Repaso del capítulo
    7. Repaso de fórmulas
    8. Práctica
    9. Tarea para la casa
    10. Referencias
    11. Soluciones
  7. 6 La distribución normal
    1. Introducción
    2. 6.1 La distribución normal estándar
    3. 6.2 Uso de la distribución normal
    4. 6.3 Estimación de la binomial con la distribución normal
    5. Términos clave
    6. Repaso del capítulo
    7. Repaso de fórmulas
    8. Práctica
    9. Tarea para la casa
    10. Referencias
    11. Soluciones
  8. 7 El teorema del límite central
    1. Introducción
    2. 7.1 Teorema del límite central de las medias muestrales
    3. 7.2 Uso del teorema del límite central
    4. 7.3 Teorema del límite central de las proporciones
    5. 7.4 Factor de corrección de población finita
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  9. 8 Intervalos de confianza
    1. Introducción
    2. 8.1 Un intervalo de confianza para una desviación típica de la población, con un tamaño de muestra conocido o grande
    3. 8.2 Un intervalo de confianza para una desviación típica de población desconocida, caso de una muestra pequeña
    4. 8.3 Un intervalo de confianza para una proporción de población
    5. 8.4 Cálculo del tamaño de la muestra n: variables aleatorias continuas y binarias
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  10. 9 Pruebas de hipótesis con una muestra
    1. Introducción
    2. 9.1 Hipótesis nula y alternativa
    3. 9.2 Resultados y errores de tipo I y II
    4. 9.3 Distribución necesaria para la comprobación de la hipótesis
    5. 9.4 Ejemplos de pruebas de hipótesis completas
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  11. 10 Pruebas de hipótesis con dos muestras
    1. Introducción
    2. 10.1 Comparación de las medias de dos poblaciones independientes
    3. 10.2 Criterios de Cohen para efectos de tamaño pequeño, mediano y grande
    4. 10.3 Prueba de diferencias de medias: suponer varianzas de población iguales
    5. 10.4 Comparación de dos proporciones de población independientes
    6. 10.5 Dos medias poblacionales con desviaciones típicas conocidas
    7. 10.6 Muestras coincidentes o emparejadas
    8. Términos clave
    9. Repaso del capítulo
    10. Repaso de fórmulas
    11. Práctica
    12. Tarea para la casa
    13. Resúmalo todo: tarea para la casa
    14. Referencias
    15. Soluciones
  12. 11 La distribución chi-cuadrado
    1. Introducción
    2. 11.1 Datos sobre la distribución chi-cuadrado
    3. 11.2 Prueba de una sola varianza
    4. 11.3 Prueba de bondad de ajuste
    5. 11.4 Prueba de independencia
    6. 11.5 Prueba de homogeneidad
    7. 11.6 Comparación de las pruebas chi-cuadrado
    8. Términos clave
    9. Repaso del capítulo
    10. Repaso de fórmulas
    11. Práctica
    12. Tarea para la casa
    13. Resúmalo todo: tarea para la casa
    14. Referencias
    15. Soluciones
  13. 12 La distribución F y el anova de una vía
    1. Introducción
    2. 12.1 Prueba de dos varianzas
    3. 12.2 ANOVA de una vía
    4. 12.3 La distribución F y el cociente F
    5. 12.4 Datos sobre la distribución F
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  14. 13 Regresión lineal y correlación
    1. Introducción
    2. 13.1 El coeficiente de correlación r
    3. 13.2 Comprobación de la importancia del coeficiente de correlación
    4. 13.3 Ecuaciones lineales
    5. 13.4 La ecuación de regresión
    6. 13.5 Interpretación de los coeficientes de regresión: elasticidad y transformación logarítmica
    7. 13.6 Predicción con una ecuación de regresión
    8. 13.7 Cómo utilizar Microsoft Excel® para el análisis de regresión
    9. Términos clave
    10. Repaso del capítulo
    11. Práctica
    12. Soluciones
  15. A Cuadros estadísticos
  16. B Oraciones, símbolos y fórmulas matemáticas
  17. Índice

La función de densidad de probabilidad más sencilla es la hipergeométrica. Es la más básica porque se crea combinando nuestro conocimiento de las probabilidades a partir de los diagramas de Venn, las reglas de adición y multiplicación y la fórmula de recuento combinatorio.

Para hallar el número de formas de obtener 2 ases de los cuatro que hay en la baraja, calculamos:

42 =4!2!(42)!=642=4!2!(42)!=6

Y si no nos importara qué más tenemos en la mano para las otras tres cartas calcularíamos:

483 =48!3!45!=17.296483=48!3!45!=17.296

Uniendo todo esto, podemos calcular la probabilidad de obtener exactamente dos ases en una mano de póquer de 5 cartas como:

42483525=0,039942483525=0,0399
4.2

Esta solución es en realidad la distribución de probabilidad conocida como hipergeométrica. La fórmula generalizada es:

h(x) = A x NA nx Nnh(x)= A x NA nx Nn

donde x = el número que nos interesa procedente del grupo con A objetos.

h(x) es la probabilidad de x aciertos, en n intentos, cuando los aciertos A (ases en este caso) están en una población que contiene N elementos. La distribución hipergeométrica es un ejemplo de distribución de probabilidad discreta porque no hay posibilidad de éxito parcial, es decir, no puede haber manos de póquer con 2 1/2 ases. Dicho de otro modo, una variable aleatoria discreta tiene que ser un número entero, o que se pueda contar, solamente. Esta distribución de probabilidad funciona en los casos en que la probabilidad de éxito cambia con cada extracción de cartas. Otra forma de decir esto es que los eventos NO son independientes. Al utilizar una baraja de cartas, estamos haciendo un muestreo SIN reemplazo. Si volvemos a poner cada carta después de haberla sacado, la distribución hipergeométrica sería una pdf inadecuada.

Para que el hipergeométrico funcione,

  1. la población debe ser divisible en dos y solo dos subconjuntos independientes (ases y no ases en nuestro ejemplo). La variable aleatoria X = el número de elementos del grupo de interés.
  2. el experimento debe tener probabilidades cambiantes de éxito con cada experimento (el hecho de que las cartas no sean reemplazadas después de la extracción en nuestro ejemplo hace que esto sea cierto en este caso). Otra forma de decir esto es que se muestrea sin reemplazo y, por lo tanto, cada selección no es independiente.
  3. la variable aleatoria debe ser discreta, en lugar de continua.

Ejemplo 4.1

Translation missing: es.problem

Un plato de caramelos contiene 30 gominolas y 20 pastillas de goma. Se eligen diez caramelos al azar. ¿Cuál es la probabilidad de que 5 de los 10 sean pastillas de goma? Los dos grupos son gominolas y pastillas de goma. Dado que la pregunta de probabilidad pide la probabilidad de elegir gominolas, el grupo de interés (primer grupo A en la fórmula) son las gominolas. El tamaño del grupo de interés (primer grupo) es de 30. El tamaño del segundo grupo es de 20. El tamaño de la muestra es de 10 (gominolas o pastillas de goma). Supongamos que X = el número de pastillas de goma en la muestra de 10. X toma los valores x = 0, 1, 2, ..., 10. a. ¿Cuál es el enunciado de la probabilidad escrito matemáticamente? b. ¿Cuál es la función de densidad de probabilidad hipergeométrica escrita para resolver este problema? c. ¿Cuál es la respuesta a la pregunta "¿Cuál es la probabilidad de extraer del plato 5 pastillas de goma en 10 intentos?"

Inténtelo 4.1

Una bolsa contiene fichas de letras. Cuarenta y cuatro de las fichas son vocales y 56 son consonantes. Se eligen siete fichas al azar. Quiere saber la probabilidad de que cuatro de las siete fichas sean vocales. ¿Cuál es el grupo de interés, el tamaño del grupo de interés y el tamaño de la muestra?

Solicitar una copia impresa

As an Amazon Associate we earn from qualifying purchases.

Cita/Atribución

¿Desea citar, compartir o modificar este libro? Este libro utiliza la Creative Commons Attribution License y debe atribuir a OpenStax.

Información de atribución
  • Si redistribuye todo o parte de este libro en formato impreso, debe incluir en cada página física la siguiente atribución:
    Acceso gratis en https://openstax.org/books/introducci%C3%B3n-estad%C3%ADstica-empresarial/pages/1-introduccion
  • Si redistribuye todo o parte de este libro en formato digital, debe incluir en cada vista de la página digital la siguiente atribución:
    Acceso gratuito en https://openstax.org/books/introducci%C3%B3n-estad%C3%ADstica-empresarial/pages/1-introduccion
Información sobre citas

© 28 ene. 2022 OpenStax. El contenido de los libros de texto que produce OpenStax tiene una licencia de Creative Commons Attribution License . El nombre de OpenStax, el logotipo de OpenStax, las portadas de libros de OpenStax, el nombre de OpenStax CNX y el logotipo de OpenStax CNX no están sujetos a la licencia de Creative Commons y no se pueden reproducir sin el previo y expreso consentimiento por escrito de Rice University.