Omitir e ir al contenidoIr a la página de accesibilidadMenú de atajos de teclado
Logo de OpenStax

Menú
Índice
  1. Prefacio
  2. 1 Muestreo y datos
    1. Introducción
    2. 1.1 Definiciones de estadística, probabilidad y términos clave
    3. 1.2 Datos, muestreo y variación de datos y muestreo
    4. 1.3 Niveles de medición
    5. 1.4 Diseño experimental y ética
    6. Términos clave
    7. Repaso del capítulo
    8. Tarea para la casa
    9. Referencias
    10. Soluciones
  3. 2 Estadística descriptiva
    1. Introducción
    2. 2.1 Datos mostrados
    3. 2.2 Medidas de la ubicación de los datos
    4. 2.3 Medidas del centro de los datos
    5. 2.4 Notación sigma y cálculo de la media aritmética
    6. 2.5 Media geométrica
    7. 2.6 Distorsión y media, mediana y moda
    8. 2.7 Medidas de la dispersión de los datos
    9. Términos clave
    10. Repaso del capítulo
    11. Repaso de fórmulas
    12. Práctica
    13. Tarea para la casa
    14. Resúmalo todo: tarea para la casa
    15. Referencias
    16. Soluciones
  4. 3 Temas de probabilidad
    1. Introducción
    2. 3.1 Terminología
    3. 3.2 Eventos mutuamente excluyentes e independientes
    4. 3.3 Dos reglas básicas de la probabilidad
    5. 3.4 Tablas de contingencia y árboles de probabilidad
    6. 3.5 Diagramas de Venn
    7. Términos clave
    8. Repaso del capítulo
    9. Repaso de fórmulas
    10. Práctica
    11. Uniéndolo todo: Práctica
    12. Tarea para la casa
    13. Resúmalo todo: tarea para la casa
    14. Referencias
    15. Soluciones
  5. 4 Variables aleatorias discretas
    1. Introducción
    2. 4.1 Distribución hipergeométrica
    3. 4.2 Distribución binomial
    4. 4.3 Distribución geométrica
    5. 4.4 Distribución de Poisson
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  6. 5 Variables aleatorias continuas
    1. Introducción
    2. 5.1 Propiedades de las funciones de densidad de probabilidad continuas
    3. 5.2 La distribución uniforme
    4. 5.3 La distribución exponencial
    5. Términos clave
    6. Repaso del capítulo
    7. Repaso de fórmulas
    8. Práctica
    9. Tarea para la casa
    10. Referencias
    11. Soluciones
  7. 6 La distribución normal
    1. Introducción
    2. 6.1 La distribución normal estándar
    3. 6.2 Uso de la distribución normal
    4. 6.3 Estimación de la binomial con la distribución normal
    5. Términos clave
    6. Repaso del capítulo
    7. Repaso de fórmulas
    8. Práctica
    9. Tarea para la casa
    10. Referencias
    11. Soluciones
  8. 7 El teorema del límite central
    1. Introducción
    2. 7.1 Teorema del límite central de las medias muestrales
    3. 7.2 Uso del teorema del límite central
    4. 7.3 Teorema del límite central de las proporciones
    5. 7.4 Factor de corrección de población finita
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  9. 8 Intervalos de confianza
    1. Introducción
    2. 8.1 Un intervalo de confianza para una desviación típica de la población, con un tamaño de muestra conocido o grande
    3. 8.2 Un intervalo de confianza para una desviación típica de población desconocida, caso de una muestra pequeña
    4. 8.3 Un intervalo de confianza para una proporción de población
    5. 8.4 Cálculo del tamaño de la muestra n: variables aleatorias continuas y binarias
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  10. 9 Pruebas de hipótesis con una muestra
    1. Introducción
    2. 9.1 Hipótesis nula y alternativa
    3. 9.2 Resultados y errores de tipo I y II
    4. 9.3 Distribución necesaria para la comprobación de la hipótesis
    5. 9.4 Ejemplos de pruebas de hipótesis completas
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  11. 10 Pruebas de hipótesis con dos muestras
    1. Introducción
    2. 10.1 Comparación de las medias de dos poblaciones independientes
    3. 10.2 Criterios de Cohen para efectos de tamaño pequeño, mediano y grande
    4. 10.3 Prueba de diferencias de medias: suponer varianzas de población iguales
    5. 10.4 Comparación de dos proporciones de población independientes
    6. 10.5 Dos medias poblacionales con desviaciones típicas conocidas
    7. 10.6 Muestras coincidentes o emparejadas
    8. Términos clave
    9. Repaso del capítulo
    10. Repaso de fórmulas
    11. Práctica
    12. Tarea para la casa
    13. Resúmalo todo: tarea para la casa
    14. Referencias
    15. Soluciones
  12. 11 La distribución chi-cuadrado
    1. Introducción
    2. 11.1 Datos sobre la distribución chi-cuadrado
    3. 11.2 Prueba de una sola varianza
    4. 11.3 Prueba de bondad de ajuste
    5. 11.4 Prueba de independencia
    6. 11.5 Prueba de homogeneidad
    7. 11.6 Comparación de las pruebas chi-cuadrado
    8. Términos clave
    9. Repaso del capítulo
    10. Repaso de fórmulas
    11. Práctica
    12. Tarea para la casa
    13. Resúmalo todo: tarea para la casa
    14. Referencias
    15. Soluciones
  13. 12 La distribución F y el anova de una vía
    1. Introducción
    2. 12.1 Prueba de dos varianzas
    3. 12.2 ANOVA de una vía
    4. 12.3 La distribución F y el cociente F
    5. 12.4 Datos sobre la distribución F
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  14. 13 Regresión lineal y correlación
    1. Introducción
    2. 13.1 El coeficiente de correlación r
    3. 13.2 Comprobación de la importancia del coeficiente de correlación
    4. 13.3 Ecuaciones lineales
    5. 13.4 La ecuación de regresión
    6. 13.5 Interpretación de los coeficientes de regresión: elasticidad y transformación logarítmica
    7. 13.6 Predicción con una ecuación de regresión
    8. 13.7 Cómo utilizar Microsoft Excel® para el análisis de regresión
    9. Términos clave
    10. Repaso del capítulo
    11. Práctica
    12. Soluciones
  15. A Cuadros estadísticos
  16. B Oraciones, símbolos y fórmulas matemáticas
  17. Índice

12.1 Prueba de dos varianzas

Use la siguiente información para responder los próximos dos ejercicios. Hay dos supuestos que deben ser ciertos para hacer una prueba F de dos varianzas.

1.

Nombre un supuesto que deba ser cierto.

2.

¿Cuál es el otro supuesto que debe ser verdadero?


Use la siguiente información para responder los siguientes cinco ejercicios. Dos compañeros de trabajo se desplazan desde el mismo edificio. Les interesa saber si hay alguna variación en el tiempo que tardan en ir al trabajo conduciendo un vehículo. Cada uno de ellos registra sus tiempos durante 20 trayectos. Los tiempos del primer trabajador tienen una varianza de 12,1. Los tiempos del segundo trabajador tienen una varianza de 16,9. El primer trabajador cree que es más coherente con sus tiempos de desplazamiento. Pruebe la afirmación al nivel del 10 %. Supongamos que los tiempos de desplazamiento se distribuyen normalmente.

3.

Indique las hipótesis nula y alternativa.

4.

¿Cuál es s1 en este problema?

5.

¿Cuál es s2 en este problema?

6.

¿Cuál es n?

7.

¿Cuál es el estadístico F?

8.

¿Cuál es el valor crítico?

9.

¿La afirmación es correcta?


Use la siguiente información para responder los próximos cuatro ejercicios. Dos estudiantes están interesados en saber si hay o no variación en los resultados de sus exámenes en la clase de Matemáticas. En total son 15 los exámenes de Matemáticas que han presentado hasta ahora. Las notas del primer estudiante tienen una desviación típica de 38,1. Las notas del segundo estudiante tienen una desviación típica de 22,5. El segundo estudiante cree que sus resultados son más coherentes.

10.

Indique las hipótesis nula y alternativa.

11.

¿Cuál es el estadístico F?

12.

¿Cuál es el valor crítico?

13.

Al nivel de significación del 5 %, ¿rechazamos la hipótesis nula?


Use la siguiente información para responder los próximos tres ejercicios. Dos ciclistas comparan las varianzas de sus ritmos globales en subidas. Cada ciclista registra su velocidad al subir 35 colinas. El primer ciclista tiene una varianza de 23,8 y el segundo de 32,1. Los ciclistas quieren ver si sus varianzas son iguales o diferentes. Supongamos que los tiempos de desplazamiento se distribuyen normalmente.

14.

Indique las hipótesis nula y alternativa.

15.

¿Cuál es el estadístico F?

16.

Al nivel de significación del 5 %, ¿qué podemos decir sobre las varianzas de los ciclistas?

12.2 ANOVA de una vía

Use la siguiente información para responder los próximos cinco ejercicios. Hay cinco supuestos básicos que se deben cumplir para realizar una prueba de ANOVA de una vía. ¿Qué son?

17.

Escriba un supuesto.

18.

Escriba otro supuesto.

19.

Escriba un tercer supuesto.

20.

Escriba un cuarto supuesto.

12.3 La distribución F y el cociente F

Use la siguiente información para responder los próximos ocho ejercicios. Se van a analizar grupos de hombres de tres zonas diferentes del país para determinar su peso medio. Las entradas en la Tabla 12.13 son las ponderaciones de los diferentes grupos.

Grupo 1 Grupo 2 Grupo 3
216 202 170
198 213 165
240 284 182
187 228 197
176 210 201
Tabla 12.13
21.

¿Cuál es el factor de la suma de cuadrados?

22.

¿Cuál es el error de la suma de los cuadrados?

23.

¿Cuál es la df del numerador?

24.

¿Cuál es la df del denominador?

25.

¿Cuál es el factor de la media cuadrática?

26.

¿Cuál es el error cuadrático medio?

27.

¿Cuál es el estadístico F?


Use la siguiente información para responder los próximos ocho ejercicios. Las niñas de cuatro equipos de fútbol diferentes se someterán a pruebas para conocer la media de goles marcados por partido. Las datos en la Tabla 12.14 son los goles por partido de los diferentes equipos.

Equipo 1 Equipo 2 Equipo 3 Equipo 4
1 2 0 3
2 3 1 4
0 2 1 4
3 4 0 3
2 4 0 2
Tabla 12.14
28.

¿Cuál es SSentre?

29.

¿Cuál es la df del numerador?

30.

¿Cuál es MSentre?

31.

¿Cuál es SSdentro?

32.

¿Cuál es la df del denominador?

33.

¿Cuál es MSdentro?

34.

¿Cuál es el estadístico F?

35.

A juzgar por el estadístico F, ¿cree que es probable o improbable que se rechace la hipótesis nula?

12.4 Datos sobre la distribución F

36.

¿Qué valores puede tener un estadístico F?

37.

¿Qué ocurre con las curvas a medida que aumentan los grados de libertad del numerador y del denominador?

Use la siguiente información para responder los próximos siete ejercicios. Cuatro equipos de baloncesto tomaron una muestra aleatoria de jugadores con respecto a la altura que cada uno de ellos puede saltar (en pulgadas). Los resultados se muestran en la Tabla 12.15.

Equipo 1 Equipo 2 Equipo 3 Equipo 4 Equipo 5
36 32 48 38 41
42 35 50 44 39
51 38 39 46 40
Tabla 12.15
38.

¿Cuál es el df(num)?

39.

¿Cuál es el df(denom)?

40.

¿Cuáles son los factores de la suma de los cuadrados y de las medias cuadráticas?

41.

¿Cuáles son la suma de los cuadrados y los errores de la media cuadrática?

42.

¿Cuál es el estadístico F?

43.

¿Cuál es el valor p?

44.

Al nivel de significación del 5 %, ¿hay una diferencia en la altura media de los saltos entre los equipos?


Use la siguiente información para responder los próximos siete ejercicios. Un desarrollador de videojuegos está probando un nuevo juego en tres grupos diferentes. Cada grupo representa un mercado objetivo diferente para el juego. El desarrollador recopila las calificaciones de una muestra aleatoria de cada grupo. Los resultados se muestran en la Tabla 12.16

Grupo A Grupo B Grupo C
101 151 101
108 149 109
98 160 198
107 112 186
111 126 160
Tabla 12.16
45.

¿Cuál es el df(num)?

46.

¿Cuál es el df(denom)?

47.

¿Cuáles son la SSentre y la MSentre?

48.

¿Cuáles son la SSdentro y la MSdentro?

49.

¿Cuál es el estadístico F?

50.

¿Cuál es el valor p?

51.

Al nivel de significación del 10 %, ¿las puntuaciones entre los distintos grupos son diferentes?


Use la siguiente información para responder los próximos tres ejercicios. Supongamos que un grupo está interesado en determinar si los adolescentes obtienen su licencia de conducir alrededor de la misma edad promedio en todo el país. Supongamos que se recopilan al azar los siguientes datos de cinco adolescentes de cada región del país. Los números representan la edad a la que los adolescentes obtuvieron la licencia de conducir.

Noreste Sur Oeste Centro Este
16,3 16,9 16,4 16,2 17,1
16,1 16,5 16,5 16,6 17,2
16,4 16,4 16,6 16,5 16,6
16,5 16,2 16,1 16,4 16,8
x ¯ = x ¯ = ________ ________ ________ ________ ________
s 2 = s 2 = ________ ________ ________ ________ ________
Tabla 12.17

Introduzca los datos en su calculadora o computadora.

52.

valor p = ______

Indique las decisiones y conclusiones (en oraciones completas) para los siguientes niveles preconcebidos de α.

53.

α = 0,05

a. Decisión: ____________________________

b. Conclusión: ____________________________

54.

α = 0,01

a. Decisión: ____________________________

b. Conclusión: ____________________________

Solicitar una copia impresa

As an Amazon Associate we earn from qualifying purchases.

Cita/Atribución

¿Desea citar, compartir o modificar este libro? Este libro utiliza la Creative Commons Attribution License y debe atribuir a OpenStax.

Información de atribución
  • Si redistribuye todo o parte de este libro en formato impreso, debe incluir en cada página física la siguiente atribución:
    Acceso gratis en https://openstax.org/books/introducci%C3%B3n-estad%C3%ADstica-empresarial/pages/1-introduccion
  • Si redistribuye todo o parte de este libro en formato digital, debe incluir en cada vista de la página digital la siguiente atribución:
    Acceso gratuito en https://openstax.org/books/introducci%C3%B3n-estad%C3%ADstica-empresarial/pages/1-introduccion
Información sobre citas

© 28 ene. 2022 OpenStax. El contenido de los libros de texto que produce OpenStax tiene una licencia de Creative Commons Attribution License . El nombre de OpenStax, el logotipo de OpenStax, las portadas de libros de OpenStax, el nombre de OpenStax CNX y el logotipo de OpenStax CNX no están sujetos a la licencia de Creative Commons y no se pueden reproducir sin el previo y expreso consentimiento por escrito de Rice University.