Omitir e ir al contenidoIr a la página de accesibilidadMenú de atajos de teclado
Logo de OpenStax

Menú
Índice
  1. Prefacio
  2. 1 Muestreo y datos
    1. Introducción
    2. 1.1 Definiciones de estadística, probabilidad y términos clave
    3. 1.2 Datos, muestreo y variación de datos y muestreo
    4. 1.3 Niveles de medición
    5. 1.4 Diseño experimental y ética
    6. Términos clave
    7. Repaso del capítulo
    8. Tarea para la casa
    9. Referencias
    10. Soluciones
  3. 2 Estadística descriptiva
    1. Introducción
    2. 2.1 Datos mostrados
    3. 2.2 Medidas de la ubicación de los datos
    4. 2.3 Medidas del centro de los datos
    5. 2.4 Notación sigma y cálculo de la media aritmética
    6. 2.5 Media geométrica
    7. 2.6 Distorsión y media, mediana y moda
    8. 2.7 Medidas de la dispersión de los datos
    9. Términos clave
    10. Repaso del capítulo
    11. Repaso de fórmulas
    12. Práctica
    13. Tarea para la casa
    14. Resúmalo todo: tarea para la casa
    15. Referencias
    16. Soluciones
  4. 3 Temas de probabilidad
    1. Introducción
    2. 3.1 Terminología
    3. 3.2 Eventos mutuamente excluyentes e independientes
    4. 3.3 Dos reglas básicas de la probabilidad
    5. 3.4 Tablas de contingencia y árboles de probabilidad
    6. 3.5 Diagramas de Venn
    7. Términos clave
    8. Repaso del capítulo
    9. Repaso de fórmulas
    10. Práctica
    11. Uniéndolo todo: Práctica
    12. Tarea para la casa
    13. Resúmalo todo: tarea para la casa
    14. Referencias
    15. Soluciones
  5. 4 Variables aleatorias discretas
    1. Introducción
    2. 4.1 Distribución hipergeométrica
    3. 4.2 Distribución binomial
    4. 4.3 Distribución geométrica
    5. 4.4 Distribución de Poisson
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  6. 5 Variables aleatorias continuas
    1. Introducción
    2. 5.1 Propiedades de las funciones de densidad de probabilidad continuas
    3. 5.2 La distribución uniforme
    4. 5.3 La distribución exponencial
    5. Términos clave
    6. Repaso del capítulo
    7. Repaso de fórmulas
    8. Práctica
    9. Tarea para la casa
    10. Referencias
    11. Soluciones
  7. 6 La distribución normal
    1. Introducción
    2. 6.1 La distribución normal estándar
    3. 6.2 Uso de la distribución normal
    4. 6.3 Estimación de la binomial con la distribución normal
    5. Términos clave
    6. Repaso del capítulo
    7. Repaso de fórmulas
    8. Práctica
    9. Tarea para la casa
    10. Referencias
    11. Soluciones
  8. 7 El teorema del límite central
    1. Introducción
    2. 7.1 Teorema del límite central de las medias muestrales
    3. 7.2 Uso del teorema del límite central
    4. 7.3 Teorema del límite central de las proporciones
    5. 7.4 Factor de corrección de población finita
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  9. 8 Intervalos de confianza
    1. Introducción
    2. 8.1 Un intervalo de confianza para una desviación típica de la población, con un tamaño de muestra conocido o grande
    3. 8.2 Un intervalo de confianza para una desviación típica de población desconocida, caso de una muestra pequeña
    4. 8.3 Un intervalo de confianza para una proporción de población
    5. 8.4 Cálculo del tamaño de la muestra n: variables aleatorias continuas y binarias
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  10. 9 Pruebas de hipótesis con una muestra
    1. Introducción
    2. 9.1 Hipótesis nula y alternativa
    3. 9.2 Resultados y errores de tipo I y II
    4. 9.3 Distribución necesaria para la comprobación de la hipótesis
    5. 9.4 Ejemplos de pruebas de hipótesis completas
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  11. 10 Pruebas de hipótesis con dos muestras
    1. Introducción
    2. 10.1 Comparación de las medias de dos poblaciones independientes
    3. 10.2 Criterios de Cohen para efectos de tamaño pequeño, mediano y grande
    4. 10.3 Prueba de diferencias de medias: suponer varianzas de población iguales
    5. 10.4 Comparación de dos proporciones de población independientes
    6. 10.5 Dos medias poblacionales con desviaciones típicas conocidas
    7. 10.6 Muestras coincidentes o emparejadas
    8. Términos clave
    9. Repaso del capítulo
    10. Repaso de fórmulas
    11. Práctica
    12. Tarea para la casa
    13. Resúmalo todo: tarea para la casa
    14. Referencias
    15. Soluciones
  12. 11 La distribución chi-cuadrado
    1. Introducción
    2. 11.1 Datos sobre la distribución chi-cuadrado
    3. 11.2 Prueba de una sola varianza
    4. 11.3 Prueba de bondad de ajuste
    5. 11.4 Prueba de independencia
    6. 11.5 Prueba de homogeneidad
    7. 11.6 Comparación de las pruebas chi-cuadrado
    8. Términos clave
    9. Repaso del capítulo
    10. Repaso de fórmulas
    11. Práctica
    12. Tarea para la casa
    13. Resúmalo todo: tarea para la casa
    14. Referencias
    15. Soluciones
  13. 12 La distribución F y el anova de una vía
    1. Introducción
    2. 12.1 Prueba de dos varianzas
    3. 12.2 ANOVA de una vía
    4. 12.3 La distribución F y el cociente F
    5. 12.4 Datos sobre la distribución F
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  14. 13 Regresión lineal y correlación
    1. Introducción
    2. 13.1 El coeficiente de correlación r
    3. 13.2 Comprobación de la importancia del coeficiente de correlación
    4. 13.3 Ecuaciones lineales
    5. 13.4 La ecuación de regresión
    6. 13.5 Interpretación de los coeficientes de regresión: elasticidad y transformación logarítmica
    7. 13.6 Predicción con una ecuación de regresión
    8. 13.7 Cómo utilizar Microsoft Excel® para el análisis de regresión
    9. Términos clave
    10. Repaso del capítulo
    11. Práctica
    12. Soluciones
  15. A Cuadros estadísticos
  16. B Oraciones, símbolos y fórmulas matemáticas
  17. Índice

Este capítulo introduce una nueva función de densidad de probabilidad: la distribución F. Se utiliza para muchas aplicaciones, incluso el ANOVA y para probar la igualdad entre varias medias. Comenzamos con la distribución F y la prueba de la hipótesis de las diferencias en las varianzas. A menudo es conveniente comparar dos varianzas en vez de dos promedios. Por ejemplo, a los administradores del instituto universitario les gustaría que dos profesores que califiquen exámenes tengan la misma variación en su calificación. Para que una tapa se adapte a un recipiente, la variación en la tapa y del recipiente debería ser aproximadamente la misma. Un supermercado podría estar interesado en la variabilidad de los tiempos para procesar una compra en dos de sus cajas. En finanzas, la varianza es una medida de riesgo; por ende, sería interesante comprobar la hipótesis de que dos carteras de inversión diferentes tienen la misma varianza: la volatilidad.

Para realizar una prueba F de dos varianzas, es importante que ocurra lo siguiente:

  1. Las poblaciones de las que se extraen las dos muestras tienen una distribución aproximadamente normal.
  2. Las dos poblaciones son independientes entre sí.

A diferencia de la mayoría de las pruebas de hipótesis en este libro, la prueba F para la igualdad de dos varianzas es muy sensible a las desviaciones de la normalidad. Si las dos distribuciones no son normales, o se aproximan, la prueba puede dar un resultado sesgado para el estadístico de prueba.

Supongamos que tomamos una muestra aleatoria de dos poblaciones normales independientes. Supongamos que σ 1 2 σ 1 2 y σ 2 2 σ 2 2 son las varianzas poblacionales desconocidas y s 1 2 s 1 2 y s 2 2 s 2 2 sean las varianzas de la muestra. Supongamos que los tamaños de las muestras son n1 y n2. Como nos interesa comparar las dos varianzas de la muestra, utilizamos el cociente F:

F= [ s 1 2 σ 1 2 ] [ s 2 2 σ 2 2 ] F= [ s 1 2 σ 1 2 ] [ s 2 2 σ 2 2 ]

F tiene la distribución F ~ F(n1 – 1, n2 – 1)

donde n1 – 1 son los grados de libertad del numerador y n2 – 1 son los grados de libertad del denominador.

Si la hipótesis nula es σ 1 2 = σ 2 2 σ 1 2 = σ 2 2 , entonces el cociente F, el estadístico de prueba, se convierte en Fc= [ s 1 2 σ 1 2 ] [ s 2 2 σ 2 2 ] = s 1 2 s 2 2 Fc= [ s 1 2 σ 1 2 ] [ s 2 2 σ 2 2 ] = s 1 2 s 2 2

Las distintas formas de las hipótesis probadas son:

Prueba de dos colas Prueba de una cola Prueba de una cola
H0: σ12 = σ22 H0: σ12 ≤ σ22 H0: σ12 ≥ σ22
H1: σ12 ≠ σ22 H1: σ12 > σ22 H1: σ12 < σ22
Tabla 12.1

Una forma más general de las hipótesis nula y alternativa para una prueba de dos colas sería:

H0 : σ12 σ22 = δ0 H0: σ12 σ22 =δ0
Ha : σ12 σ22 δ0 Ha: σ12 σ22 δ0

Donde si δ0 = 1 es una simple prueba de la hipótesis de que las dos varianzas son iguales. Esta forma de la hipótesis tiene la ventaja de permitir pruebas que van más allá de las simples diferencias y puede dar cabida a pruebas de diferencias específicas, como hicimos con las diferencias de medias y las diferencias de proporciones. Esta forma de la hipótesis también muestra la relación entre la distribución F y la χ2: la F es un cociente de dos distribuciones de chi-cuadrado, que vimos en el capítulo anterior. Esto sirve para determinar los grados de libertad de la distribución F resultante.

Si las dos poblaciones tienen varianzas iguales, entonces s 1 2 s 1 2 y s 2 2 s 2 2 están cerca en valor y el estadístico de prueba, Fc= s 1 2 s 2 2 Fc= s 1 2 s 2 2 está cerca de uno. Pero si las dos variantes de la población son muy diferentes, s 1 2 s 1 2 y s 2 2 s 2 2 también suelen ser muy diferentes. Al elegir s 1 2 s 1 2 ya que la mayor varianza de la muestra hace que el cociente s 1 2 s 2 2 s 1 2 s 2 2 sea mayor que uno. Si s 1 2 s 1 2 y s 2 2 s 2 2 están muy separados, entonces Fc= s 1 2 s 2 2 Fc= s 1 2 s 2 2 es un número grande.

Por lo tanto, si F es cercano a uno, la evidencia favorece la hipótesis nula (las dos varianzas de la población son iguales). Pero si F es mucho mayor que uno, entonces la evidencia es contraria a la hipótesis nula. En esencia, nos preguntamos si el valor calculado del estadístico de prueba F es significativamente diferente de uno.

Para determinar los puntos críticos tenemos que calcular Fα, df1,df2. Consulte la tabla F en el Apéndice A. Esta tabla F tiene valores para varios niveles de significación de 0,1 a 0,001, designados como "p" en la primera columna. Elija el nivel de significación deseado y siga hacia abajo y a través para encontrar el valor crítico en la intersección de los dos grados de libertad diferentes. La distribución F tiene dos grados de libertad diferentes, uno asociado al numerador, df1, y otro asociado al denominador, df2. Para complicar las cosas, la distribución F no es simétrica y cambia el grado de asimetría a medida que cambian los grados de libertad. Los grados de libertad en el numerador son n1-1, donde n1 es el tamaño de la muestra del grupo 1, y los grados de libertad en el denominador son n2-1, donde n2 es el tamaño de la muestra del grupo 2. Fα, df1, df2 dará el valor crítico en el extremo superior de la distribución F.

Para calcular el valor crítico para el extremo inferior de la distribución, invierta los grados de libertad y divida el valor F de la tabla entre el número uno.

  • Valor crítico superior de la cola: Fα,df1,df2
  • Valor crítico inferior de la cola: 1/Fα,df2,df1

Cuando el valor calculado de F está entre los valores críticos, no en la cola, no podemos rechazar la hipótesis nula de que las dos varianzas proceden de una población con la misma varianza. Si el valor F calculado está en cualquiera de las dos colas, no podemos aceptar la hipótesis nula, tal y como hemos hecho en todas las pruebas de hipótesis anteriores.

Una forma alternativa de calcular los valores críticos de la distribución F facilita el uso de la tabla F. Observamos en la tabla F que todos los valores de F son mayores que uno, por lo que el valor crítico de F para la cola de la izquierda siempre será menor que uno, porque para calcular el valor crítico en la cola de la izquierda dividimos un valor de F entre el número uno, como se muestra arriba. También observamos que si la varianza de la muestra en el numerador del estadístico de prueba es mayor que la varianza de la muestra en el denominador, el valor F resultante será mayor que uno. El método abreviado para esta prueba consiste en asegurarse de que la mayor de las dos varianzas de la muestra se coloque en el numerador para calcular el estadístico de prueba. Esto significará que solo habrá que calcular el valor crítico de la cola derecha en la tabla F.

Ejemplo 12.1

Translation missing: es.problem

Dos instructores de institutos universitarios están interesados en saber si existe alguna variación en la forma de calificar los exámenes de Matemáticas. Cada uno de ellos califica el mismo conjunto de 10 exámenes. Las notas del primer instructor tienen una varianza de 52,3. Las notas del segundo instructor tienen una varianza de 89,9. Pruebe la afirmación de que la varianza del primer instructor es menor (en la mayoría de los institutos universitarios es deseable que las varianzas de las notas de los exámenes sean casi iguales entre los instructores). El nivel de significación es del 10 %.

Inténtelo 12.1

La Sociedad Coral de Nueva York divide a los cantantes hombres en cuatro categorías, desde las voces más altas hasta las más bajas: tenor 1, tenor 2, bajo 1, bajo 2. En la tabla están las estaturas de los hombres de los grupos tenor 1 y bajo 2. Uno sospecha que los hombres más altos tendrán voces más graves, y que la varianza de la altura puede subir también con las voces más graves. ¿Tenemos pruebas fehacientes de que la varianza de las alturas de los cantantes en cada uno de estos dos grupos (tenor 1 y bajo 2) es diferente?

Tenor 1 Bajo 2 Tenor 1 Bajo 2 Tenor 1 Bajo 2
69 72 67 72 68 67
72 75 70 74 67 70
71 67 65 70 64 70
66 75 72 66 69
76 74 70 68 72
74 72 68 75 71
71 72 64 68 74
66 74 73 70 75
68 72 66 72
Tabla 12.2
Solicitar una copia impresa

As an Amazon Associate we earn from qualifying purchases.

Cita/Atribución

¿Desea citar, compartir o modificar este libro? Este libro utiliza la Creative Commons Attribution License y debe atribuir a OpenStax.

Información de atribución
  • Si redistribuye todo o parte de este libro en formato impreso, debe incluir en cada página física la siguiente atribución:
    Acceso gratis en https://openstax.org/books/introducci%C3%B3n-estad%C3%ADstica-empresarial/pages/1-introduccion
  • Si redistribuye todo o parte de este libro en formato digital, debe incluir en cada vista de la página digital la siguiente atribución:
    Acceso gratuito en https://openstax.org/books/introducci%C3%B3n-estad%C3%ADstica-empresarial/pages/1-introduccion
Información sobre citas

© 28 ene. 2022 OpenStax. El contenido de los libros de texto que produce OpenStax tiene una licencia de Creative Commons Attribution License . El nombre de OpenStax, el logotipo de OpenStax, las portadas de libros de OpenStax, el nombre de OpenStax CNX y el logotipo de OpenStax CNX no están sujetos a la licencia de Creative Commons y no se pueden reproducir sin el previo y expreso consentimiento por escrito de Rice University.