Problemas
11.1 Movimiento rodadura
¿Cuál es la velocidad angular de un neumático de 75,0 cm de diámetro en un automóvil que viaja a 90,0 km/h?
Un niño recorre 2,00 km en bicicleta. Las ruedas tienen un radio de 30,0 cm. ¿Cuál es el ángulo total que rotan los neumáticos durante su viaje?
Si el niño de la bicicleta del problema anterior acelera desde el reposo hasta una rapidez de 10,0 m/s en 10,0 s, ¿cuál es la aceleración angular de los neumáticos?
Los autos de carreras de Fórmula 1 tienen neumáticos de 66 cm de diámetro. Si un Fórmula 1 alcanza una rapidez media de 300 km/h durante una carrera, ¿cuál es el desplazamiento angular en revoluciones de las ruedas si el auto de carreras mantiene esta velocidad durante 1,5 horas?
Una canica rueda hacia abajo por una pendiente de desde el reposo. (a) ¿Cuál es su aceleración? (b) ¿Qué distancia recorre en 3,0 s?
Repita el problema anterior al sustituir la canica por un cilindro macizo. Explique el nuevo resultado.
Un cuerpo rígido de sección transversal cilíndrica se suelta desde la parte superior de una pendiente de . Rueda 10,0 m hasta la parte inferior en 2,60 s. Halle el momento de inercia del cuerpo en función de su masa m y su radio r.
Un yoyo puede considerarse un cilindro sólido de masa m y radio r que tiene una cuerda ligera enrollada alrededor de su circunferencia (vea más abajo). Un extremo de la cuerda se mantiene fijo en el espacio. Si el cilindro cae mientras la cuerda se desenrolla sin deslizarse, ¿cuál es la aceleración del cilindro?
Un cilindro macizo de radio 10,0 cm rueda hacia abajo por una pendiente con deslizamiento. El ángulo de inclinación es El coeficiente de fricción cinética en la superficie es de 0,400. ¿Cuál es la aceleración angular del cilindro macizo? ¿Cuál es la aceleración lineal?
Una bola de boliche rueda hacia arriba por una rampa de 0,5 m de altura, sin deslizarse hasta el depósito. Tiene una velocidad inicial de su centro de masa de 3,0 m/s. (a) ¿Cuál es su velocidad en la parte superior de la rampa? (b) Si la rampa tiene 1 m de altura, ¿llega a la parte superior?
Un cilindro macizo de 40,0 kg rueda por una superficie horizontal a una velocidad de 6,0 m/s. ¿Cuánto trabajo se requiere para detenerlo?
Una esfera sólida de 40,0 kg rueda por una superficie horizontal a una rapidez de 6,0 m/s. ¿Cuánto trabajo se requiere para detenerlo? Compare los resultados con el problema anterior.
Un cilindro macizo rueda hacia arriba por una pendiente, en un ángulo de Si comienza en la parte inferior a una rapidez de 10 m/s, ¿cuál es la distancia que recorre en la pendiente?
Una rueda cilíndrica maciza de masa M y radio R es halada por una fuerza aplicada al centro de la rueda a de la horizontal (vea la siguiente figura). Si la rueda debe rodar sin deslizarse, ¿cuál es el valor máximo de Los coeficientes de fricción estática y cinética son
Un cilindro (Cylinder, Cyl) hueco que rueda sin deslizarse recibe una velocidad de 5,0 m/s y rueda hacia arriba por una pendiente hasta una altura vertical de 1,0 m. Si a una esfera (Sphere, Sph) hueca de la misma masa y radio se le da la misma velocidad inicial, ¿a qué altura vertical rueda hacia arriba de la pendiente?
11.2 Momento angular
Una partícula de 0,2 kg se desplaza por la línea a una velocidad . ¿Cuál es el momento angular de la partícula respecto al origen?
Un pájaro vuela por encima de su posición a una altura de 300,0 m y a una rapidez horizontal al suelo de 20,0 m/s. El pájaro tiene una masa de 2,0 kg. El vector de radio hacia el pájaro forma un ángulo con respecto al suelo. El vector de radio al pájaro y su vector de momento se encuentran en el plano xy. ¿Cuál es el momento angular del pájaro con respecto al punto en el que usted se encuentra?
Un auto de carreras de Fórmula 1 con una masa de 750,0 kg circula a gran velocidad por un circuito de Mónaco y entra en una curva circular a 220,0 km/h en sentido contrario de las agujas del reloj en torno al origen del círculo. En otra parte del recorrido, el auto entra en un segundo giro circular a 180 km/h también en sentido contrario de las agujas del reloj. Si el radio de curvatura de la primera curva es de 130,0 m y el de la segunda es de 100,0 m, compare los momentos angulares del auto de carreras en cada curva tomados en torno al origen del giro circular.
Una partícula de masa 5,0 kg tiene un vector de posición en un instante determinado cuando su velocidad es con respecto al origen. (a) ¿Cuál es el momento angular de la partícula? (b) Si una fuerza actúa sobre la partícula en este instante, ¿cuál es el torque en torno al origen?
Utilice la regla de la mano derecha para determinar las direcciones de los momentos angulares en torno al origen de las partículas como se muestra a continuación. El eje de la z está afuera de la página.
Supongamos que las partículas del problema anterior tienen masas . Las velocidades de las partículas son , , , . (a) Calcule el momento angular de cada partícula en torno al origen. (b) ¿Cuál es el momento angular total del sistema de cuatro partículas en torno al origen?
Dos partículas de igual masa viajan con la misma rapidez en direcciones opuestas a lo largo de líneas paralelas separadas por una distancia d. Demuestre que el momento angular de este sistema de dos partículas es el mismo, independientemente del punto que se utilice como referencia para calcular el momento angular.
Un avión de masa vuela horizontalmente a una altitud de 10 km, con una rapidez constante de 250 m/s con respecto a la Tierra. (a) ¿Cuál es la magnitud del momento angular del avión con respecto a un observador en tierra situado directamente debajo del avión? (b) ¿Cambia el momento angular cuando el avión vuela a una altitud constante?
En un instante determinado, la posición de una partícula de 1,0 kg es , su velocidad es , y la fuerza sobre ella es . (a) ¿Cuál es el momento angular de la partícula en torno al origen? (b) ¿Cuál es el torque de la partícula en torno al origen? (c) ¿Cuál es la tasa de tiempo del cambio del momento angular de la partícula en este instante?
Una partícula de masa m se deja caer en el punto y cae verticalmente en el campo gravitacional de la Tierra (a) ¿Cuál es la expresión para el momento angular de la partícula alrededor del eje de la z, que apunta directamente hacia afuera de la página como se muestra a continuación? (b) Calcule el torque de la partícula alrededor del eje de la z. (c) ¿Es el torque igual a la tasa de tiempo del cambio del momento angular?
(a) Calcule el momento angular de la Tierra en su órbita alrededor del Sol. (b) Compare este momento angular con el momento angular de la Tierra alrededor de su eje.
Una roca de 20 kg de masa y 20 cm de radio rueda hacia abajo por una colina de 15 m de altura desde el reposo. ¿Cuál es su momento angular cuando está en la mitad de la colina? (b) ¿En la parte inferior?
Un satélite gira a 6,0 rev/s. El satélite consta de un cuerpo principal en forma de esfera de 2,0 m de radio y 10.000 kg de masa, y dos antenas que sobresalen del centro de masa del cuerpo principal y que pueden aproximarse con varillas de 3,0 m de longitud cada una y 10 kg de masa. Las antenas se encuentran en el plano de rotación. ¿Cuál es el momento angular del satélite?
Una hélice consta de dos aspas de 3,0 m de longitud cada una y una masa de 120 kg cada una. La hélice puede aproximarse por una sola varilla que rota alrededor de su centro de masa. La hélice parte del reposo y gira hasta 1.200 rpm en 30 segundos a una tasa constante. (a) ¿Cuál es el momento angular de la hélice a (b) ¿Cuál es el torque de la hélice?
Un pulsar es una estrella de neutrones que rota rápidamente. El pulsar de la nebulosa del Cangrejo, en la constelación de Tauro, tiene un periodo de , radio de 10,0 km y masa El periodo de rotación del pulsar aumentará con el tiempo debido a la liberación de radiación electromagnética, que no cambia su radio, pero reduce su energía de rotación. (a) ¿Cuál es el momento angular del pulsar? (b) Supongamos que la velocidad angular disminuye a una tasa de . ¿Cuál es el torque del pulsar?
Las aspas de una turbina de viento tienen 30 m de longitud y rotan a una tasa máxima de 20 rev/min. (a) Si las aspas pesan 6.000 kg cada una y el conjunto del rotor tiene tres aspas, calcule el momento angular de la turbina a esta tasa de rotación. (b) ¿Cuál es el torque necesario para hacer girar las aspas hasta la tasa máxima de rotación en 5 minutos?
Una montaña rusa tiene una masa de 3.000,0 kg y debe atravesar con seguridad un giro circular vertical de 50,0 m de radio. ¿Cuál es el momento angular mínimo de la montaña rusa en la parte inferior del giro circular para pasar con seguridad? Ignore la fricción en la pista. Tome la montaña rusa como una partícula puntual.
Un ciclista de montaña da un salto en una carrera y se va por los aires. La bicicleta de montaña se desplaza a 10,0 m/s antes de ir por los aires. Si la masa de la rueda delantera de la bicicleta es de 750 g y tiene un radio de 35 cm, ¿cuál es el momento angular de la rueda que gira en el aire en el momento en que la bicicleta abandona el suelo?
11.3 Conservación del momento angular
Un disco de masa 2,0 kg y radio 60 cm con una pequeña masa de 0,05 kg fijada en el borde rota a 2,0 rev/s. La pequeña masa, mientras está unida al disco, se desliza gradualmente hacia el centro del disco. ¿Cuál es la velocidad de rotación final del disco?
La masa del Sol es su radio es y tiene un periodo de rotación de aproximadamente 28 días. Si el Sol colapsara en una enana blanca de radio ¿cuál sería su periodo si no se eyectara masa y una esfera de densidad uniforme pudiera modelar el Sol tanto antes como después?
Un cilindro con inercia de rotación rota en el sentido de las agujas del reloj alrededor de un eje vertical que pasa por su centro a rapidez angular Otro cilindro con inercia de rotación rota en sentido contrario a las agujas del reloj en torno al mismo eje a rapidez angular . Si los cilindros se acoplan de forma que tengan el mismo eje de rotación, ¿cuál es la rapidez angular de la combinación? ¿Qué porcentaje de la energía cinética original se pierde con la fricción?
Un clavadista que sale del trampolín realiza una rotación inicial con el cuerpo totalmente extendido antes de asumir la posición agrupada y ejecutar tres saltos mortales hacia atrás antes de caer al agua. Si su momento de inercia antes de flexionarse es y después de la posición agrupada durante los saltos mortales es , ¿qué velocidad de rotación deberá impartir a su cuerpo directamente fuera de la tabla y antes de la posición agrupada si tarda 1,4 s en ejecutar los saltos mortales antes de caer al agua?
Un satélite terrestre tiene su apogeo a 2.500 km sobre la superficie de la Tierra y su perigeo a 500 km sobre la superficie de la Tierra. En el apogeo su rapidez es de 6.260 m/s. ¿Cuál es su rapidez en el perigeo? El radio de la Tierra es de 6.370 km (véase más abajo).
La órbita de Mólniya es una órbita muy excéntrica de un satélite de comunicaciones para proporcionar una cobertura de comunicaciones continua a los países escandinavos y la Rusia adyacente. La órbita se sitúa de manera que estos países tengan el satélite a la vista durante largos periodos (véase más abajo). Si un satélite en dicha órbita tiene un apogeo a 40.000,0 km, medido desde el centro de la Tierra, y una velocidad de 3,0 km/s, ¿cuál sería su velocidad en el perigeo, medida a 200,0 km de altura?
A continuación se muestra una pequeña partícula de masa 20 g que se desplaza a una rapidez de 10,0 m/s cuando choca y se pega al borde de un cilindro sólido uniforme. El cilindro rota libremente en torno a su eje a través de su centro y es perpendicular a la página. El cilindro tiene una masa de 0,5 kg y un radio de 10 cm, y está inicialmente en reposo. (a) ¿Cuál es la velocidad angular del sistema después de la colisión? (b) ¿Cuánta energía cinética se pierde en la colisión?
Un insecto de masa 0,020 kg está en reposo, en el borde de un disco cilíndrico macizo rotando en un plano horizontal alrededor del eje vertical que pasa por su centro. El disco rota a 10,0 rad/s. El insecto se arrastra hacia el centro del disco. (a) ¿Cuál es la nueva velocidad angular del disco? (b) ¿Cuál es el cambio en la energía cinética del sistema? (c) Si el insecto vuelve a arrastrarse hasta el borde exterior del disco, ¿cuál es entonces la velocidad angular del disco? (d) ¿Cuál es la nueva energía cinética del sistema? (e) ¿Cuál es la causa del aumento y la disminución de la energía cinética?
Una varilla uniforme de masa 200 g y longitud 100 cm rota libremente en un plano horizontal alrededor de un eje vertical fijo que pasa por su centro, perpendicular a su longitud. Dos pequeñas cuentas, cada una de ellas de 20 g de masa, están montadas en ranuras a lo largo de la varilla. Inicialmente, las dos cuentas están sujetas por medio de enganches en lados opuestos del centro de la varilla, a 10 cm del eje de rotación. Con las cuentas en esta posición, la varilla rota a una velocidad angular de 10,0 rad/s. Cuando se sueltan los cierres, las cuentas se deslizan hacia fuera a lo largo de la varilla. (a) ¿Cuál es la velocidad angular de la varilla cuando las cuentas llegan a los extremos de la misma? (b) ¿Cuál es la velocidad angular de la varilla si las cuentas salen volando de la misma?
Un tiovivo tiene un radio de 2,0 m y un momento de inercia Un niño con una masa de 50 kg corre tangente a la llanta a una rapidez de 4,0 m/s y salta sobre ella. Si el tiovivo está inicialmente en reposo, ¿cuál es la velocidad angular después de que el niño se suba?
Un tiovivo de parque infantil tiene una masa de 120 kg y un radio de 1,80 m y rota a una velocidad angular de 0,500 rev/s. ¿Cuál es su velocidad angular después de que un niño de 22,0 kg se suba a él agarrando su borde exterior? El niño está inicialmente en reposo.
Tres niños están montados en el borde de un tiovivo que pesa 100 kg, tiene un radio de 1,60 m y gira a 20,0 rpm. Los niños tienen masas de 22,0, 28,0 y 33,0 kg. Si el niño que tiene una masa de 28,0 kg se desplaza al centro del tiovivo, ¿cuál es la nueva velocidad angular en rpm?
(a) Calcule el momento angular de un patinador sobre hielo que gira a 6,00 rev/s dado que su momento de inercia es . (b) Reduce su tasa de giro (su velocidad angular) al extender sus brazos y aumentar su momento de inercia. Halle el valor de su momento de inercia si su velocidad angular disminuye a 1,25 rev/s. (c) Suponga que, en cambio, mantiene los brazos metidos y deja que la fricción del hielo le frene a 3,00 rev/s. ¿Qué torque medio se ha ejercido si se tarda 15,0 s?
Unos patinadores en pareja se acercan el uno al otro, como se muestra a continuación y se entrelazan las manos. (a) Calcule su velocidad angular final, dado que cada uno tenía una rapidez inicial de 2,50 m/s respecto al hielo. Cada uno tiene una masa de 70,0 kg, y cada uno tiene un centro de masa situado a 0,800 m de sus manos entrelazadas. Puede aproximar sus momentos de inercia a los de las masas puntuales en este radio. (b) Compare la energía cinética inicial y la energía cinética final.
Un receptor de béisbol extiende su brazo hacia arriba para atrapar una bola rápida a una rapidez de 40 m/s. La pelota pesa 0,145 kg, la longitud del brazo del receptor es de 0,5 m y la masa de 4,0 kg. (a) ¿Cuál es la velocidad angular del brazo inmediatamente después de atrapar la pelota, medida desde la cuenca del brazo? (b) ¿Cuál es el torque aplicado si el receptor detiene la rotación de su brazo 0,3 s después de atrapar la pelota?
En 2015, en Varsovia (Polonia), Olivia Oliver, de Nueva Escocia, batió el récord mundial de ser la más rápida en patinaje sobre hielo. Alcanzó el récord de 342 revoluciones por minuto, tras superar el récord mundial Guinness existente por 34 rotaciones. Si una patinadora sobre hielo extiende sus brazos a esa velocidad de rotación, ¿cuál sería su nueva velocidad de rotación? Supongamos que puede aproximarse por una varilla de 45 kg que tiene 1,7 m de altura y un radio de 15 cm en el giro récord. Con los brazos estirados toma la aproximación de una vara de longitud 130 cm con de su masa corporal alineada perpendicularmente al eje de giro. No tener en cuenta las fuerzas de fricción.
Un satélite en órbita circular geosincrónica está a 42.164,0 km del centro de la Tierra. Un pequeño asteroide colisiona con el satélite y lo envía a una órbita elíptica de 45.000,0 km de apogeo. ¿Cuál es la rapidez del satélite en el apogeo? Supongamos que su momento angular se conserva.
Una gimnasta da volteretas por el suelo, luego se lanza al aire y ejecuta varias volteretas en posición agrupada mientras está en el aire. Si su momento de inercia al ejecutar las volteretas es y su velocidad de giro es de 0,5 rev/s, ¿cuántas revoluciones hace en el aire si su momento de inercia en posición agrupada es y tiene 2,0 s para hacer las volteretas en el aire?
La centrífuga del Centro de Investigación Ames de la NASA tiene un radio de 8,8 m y puede generar fuerzas sobre su carga útil de 20 gs o 20 veces la fuerza de la gravedad en la Tierra. (a) ¿Cuál es el momento angular de una carga útil de 20 kg que experimenta 10 gs en la centrífuga? (b) Si se apaga el motor impulsor en (a) y la carga útil pierde 10 kg, ¿cuál sería su nueva velocidad de giro, teniendo en cuenta que no hay fuerzas de fricción presentes?
Una atracción de feria tiene cuatro radios a los que se unen vainas con capacidad para dos personas. Los radios tienen 15 m de longitud cada uno y están unidos a un eje central. Cada radio tiene una masa de 200,0 kg, y las vainas tienen una masa de 100,0 kg cada una. Si la atracción gira a 0,2 rev/s con cada cápsula que contiene dos niños de 50,0 kg, ¿cuál es la nueva velocidad de giro si todos los niños saltan de la atracción?
Un patinador sobre hielo se prepara para dar un salto con giros con los brazos extendidos. Su momento de inercia es mientras sus brazos están extendidos, y gira a 0,5 rev/s. Si se lanza al aire a 9,0 m/s a un ángulo de con respecto al hielo, ¿cuántas revoluciones puede ejecutar si su momento de inercia en el aire es ?
Una estación espacial consiste en un gigantesco cilindro hueco giratorio de masa que incluye a las personas en la estación y en un radio de 100,00 m. Rota en el espacio a 3,30 revoluciones por minuto para así producir gravedad artificial. Si 100 personas con una masa media de 65,00 kg realizan una caminata espacial hasta una nave que les espera, ¿cuál es la nueva tasa de rotación cuando todas las personas están fuera de la estación?
Neptuno tiene una masa de y es del Sol con un periodo orbital de 165 años. Los planetesimales del sistema solar primigenio hace 4.500 millones de años se fusionaron con Neptuno a lo largo de cientos de millones de años. Si el disco primordial que evolucionó hasta nuestro actual sistema solar tenía un radio de km y si la materia que formaba estos planetesimales, que luego se convirtieron en Neptuno, estaba repartida uniformemente en los bordes del mismo, ¿cuál era el periodo orbital de los bordes exteriores del disco primordial?
11.4 Precesión de un giroscopio
Un giroscopio tiene un disco de 0,5 kg que gira a 40 rev/s. El centro de masa del disco está a 10 cm de un pivote que es también el radio del disco. ¿Cuál es la velocidad angular de precesión?
La velocidad angular de precesión de un giroscopio es de 1,0 rad/s. Si la masa del disco en rotación es de 0,4 kg y su radio es de 30 cm, así como la distancia desde el centro de masa hasta el pivote, ¿cuál es la velocidad de rotación en rev/s del disco?
El eje de la Tierra hace un ángulo de , en dirección perpendicular al plano de la órbita terrestre. Como se muestra a continuación, este eje precesa, para hacer una rotación completa en 25.780 y.
(a) Calcula el cambio en el momento angular en la mitad de este tiempo.
(b) ¿Cuál es el torque promedio que produce este cambio en el momento angular?
(c) Si este torque lo creara un par de fuerzas que actúan en el punto más efectivo del ecuador, ¿cuál sería la magnitud de cada fuerza?