Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Search for key terms or text.

Checkpoint

6.1

12 i j 12 i j

6.3

Rotational

6.4

6565 m/sec

6.5

No.

6.7

1.49063 × 10 −18 , 4.96876 × 10 −19 , 9.93752 × 10 −19 N 1.49063 × 10 −18 , 4.96876 × 10 −19 , 9.93752 × 10 −19 N

6.9

No

6.10

f = v f = v

6.11

P y = x Q x = −2 x y P y = x Q x = −2 x y

6.12

No

6.13

2 2

6.14

2 10 π + 2 10 π 2 2 10 π + 2 10 π 2

6.15

Both line integrals equal 1000303.1000303.

6.16

4 17 4 17

6.17

C F · T d s C F · T d s

6.18

−26 −26

6.19

0

6.20

182π2182π2 kg

6.21

3/2

6.22

2 π 2 π

6.23

0

6.24

Yes

6.25

The region in the figure is connected. The region in the figure is not simply connected.

6.26

2

6.27

If C1C1 and C2C2 represent the two curves, then C1F·drC2F·dr.C1F·drC2F·dr.

6.28

f ( x , y ) = e x y 3 + x y f ( x , y ) = e x y 3 + x y

6.29

f ( x , y , z ) = 4 x 3 + sin y cos z + z f ( x , y , z ) = 4 x 3 + sin y cos z + z

6.30

f ( x , y , z ) = G x 2 + y 2 + z 2 f ( x , y , z ) = G x 2 + y 2 + z 2

6.31

It is conservative.

6.32

−10 π −10 π

6.33

Negative

6.34

45 2 45 2

6.35

2 3 2 3

6.36

3 π 2 3 π 2

6.37

g ( x , y ) = x cos y g ( x , y ) = x cos y

6.38

No

6.39

105 π 105 π

6.40

y z 2 y z 2

6.41

Yes

6.42

All points on line y=1.y=1.

6.43

i i

6.44

curl v = 0 curl v = 0

6.45

No

6.46

Yes

6.47

Cylinder x2+y2=4x2+y2=4

6.48

Cone x2+y2=z2x2+y2=z2

6.49

r(u,v)=ucosv,usinv,u,r(u,v)=ucosv,usinv,u, 0<u<,0v<π20<u<,0v<π2

6.50

Yes

6.51

43.02 43.02

6.52

With the standard parameterization of a cylinder, Equation 6.18 shows that the surface area is 2πrh.2πrh.

6.53

2 π ( 2 + sinh −1 ( 1 ) ) 2 π ( 2 + sinh −1 ( 1 ) )

6.54

24

6.55

0

6.56

38.401 π 120.640 38.401 π 120.640

6.57

N ( x , y ) = y 1 + x 2 + y 2 , x 1 + x 2 + y 2 , 1 1 + x 2 + y 2 N ( x , y ) = y 1 + x 2 + y 2 , x 1 + x 2 + y 2 , 1 1 + x 2 + y 2

6.58

0

6.59

400 kg/sec/m

6.60

440 π 3 440 π 3

6.61

Both integrals give 00

6.62

π π

6.63

3 2 3 2

6.64

curl E = x , y , −2 z curl E = x , y , −2 z

6.65

Both integrals equal 6π.6π.

6.66

30

6.67

9 ln ( 16 ) 9 ln ( 16 )

6.68

6.777 × 10 9 6.777 × 10 9

Section 6.1 Exercises

1.

Vectors

3.

False

5.


7.


9.


11.


13.


15.

F ( x , y ) = sin ( y ) i + ( x cos y sin y ) j F ( x , y ) = sin ( y ) i + ( x cos y sin y ) j

17.

F ( x , y , z ) = ( 2 x y + y ) i + ( x 2 + x + 2 y z ) j + y 2 k F ( x , y , z ) = ( 2 x y + y ) i + ( x 2 + x + 2 y z ) j + y 2 k

19.

F ( x , y ) = ( 2 x 1 + x 2 + 2 y 2 ) i + ( 4 y 1 + x 2 + 2 y 2 ) j F ( x , y ) = ( 2 x 1 + x 2 + 2 y 2 ) i + ( 4 y 1 + x 2 + 2 y 2 ) j

21.

F ( x , y ) = ( 1 x ) i y j ( 1 x ) 2 + y 2 F ( x , y ) = ( 1 x ) i y j ( 1 x ) 2 + y 2

23.

F ( x , y ) = - x i y j x 2 + y 2 F ( x , y ) = - x i y j x 2 + y 2

25.

F ( x , y ) = y i x j F ( x , y ) = y i x j

27.

F ( x , y ) = −10 ( x 2 + y 2 ) 3 / 2 ( x i + y j ) F ( x , y ) = −10 ( x 2 + y 2 ) 3 / 2 ( x i + y j )

29.

E = c | r | 2 r = c | r | r | r | E = c | r | 2 r = c | r | r | r |

31.

c ( t ) = ( cos t , sin t , e t ) = F ( c ( t ) ) c ( t ) = ( cos t , sin t , e t ) = F ( c ( t ) )

33.

H

35.

d. F+GF+G

37.

a. F+GF+G

Section 6.2 Exercises

39.

True

41.

False

43.

False

45.

C ( x y ) d s = 10 C ( x y ) d s = 10

47.

C x y 4 d s = 8192 5 C x y 4 d s = 8192 5

49.

W = 8 W = 8

51.

W = 3 π 4 W = 3 π 4

53.

W = π W = π

55.

C F · d r = 4 C F · d r = 4

57.

C y z d x + x z d y + x y d z = −1 C y z d x + x z d y + x y d z = −1

59.

C ( y 2 ) d x + ( x ) d y = 245 6 C ( y 2 ) d x + ( x ) d y = 245 6

61.

C x y d x + y d y = 190 3 C x y d x + y d y = 190 3

63.

C y 2 x 2 y 2 d s = 2 ln 5 C y 2 x 2 y 2 d s = 2 ln 5

65.

W = −66 W = −66

67.

W = −10 π 2 W = −10 π 2

69.

W = 2 W = 2

71.

a. W=11;W=11; b. W=394;W=394; c. No

73.

W = 2 π W = 2 π

75.

C F · d s = 25 5 + 1 120 C F · d s = 25 5 + 1 120

77.

C y 2 d x + ( x y x 2 ) d y = 6.15 C y 2 d x + ( x y x 2 ) d y = 6.15

79.

γ x e y d s 7.157 γ x e y d s 7.157

81.

γ ( y 2 x y ) d x −1.379 γ ( y 2 x y ) d x −1.379

83.

C F · d r −1.133 C F · d r −1.133

85.

C F · d r 2 2 . 8 5 7 C F · d r 2 2 . 8 5 7

87.

flux = 1 3 flux = 1 3

89.

flux = −20 flux = −20

91.

flux = 0 flux = 0

93.

m = 4 π ρ 5 m = 4 π ρ 5

95.

W = 0 W = 0

97.

W = k 2 W = k 2

Section 6.3 Exercises

99.

True

101.

True

103.

C F · d r = 24 C F · d r = 24

105.

C F · d r = e 3 π 2 C F · d r = e 3 π 2

107.

Not conservative

109.

Conservative, f(x,y)=3x2+5xy+2y2f(x,y)=3x2+5xy+2y2

111.

Conservative, f(x,y)=yex+xsin(y)f(x,y)=yex+xsin(y)

113.

C ( 2 y d x + 2 x d y ) = 32 C ( 2 y d x + 2 x d y ) = 32

115.

F ( x , y ) = ( 10 x + 3 y ) i + ( 3 x + 20 y ) j F ( x , y ) = ( 10 x + 3 y ) i + ( 3 x + 20 y ) j

117.

F is not conservative.

119.

F is conservative and a potential function is f(x,y,z)=xyez.f(x,y,z)=xyez.

121.

F is conservative and a potential function is f(x,y,z)=z2zxy.f(x,y,z)=z2zxy.

123.

F is conservative and a potential function is f(x,y,z)=x2y+y2z.f(x,y,z)=x2y+y2z.

125.

F is conservative and a potential function is f(x,y)=ex2yf(x,y)=ex2y

127.

C F · d r = e 2 + 2 C F · d r = e 2 + 2

129.

C F · d r = -2 C F · d r = -2

131.

C 1 G · d r = −8 π C 1 G · d r = −8 π

133.

C 2 F · d r = 7 C 2 F · d r = 7

135.

C F · d r = 159 C F · d r = 159

137.

C F · d r = −1 C F · d r = −1

139.

4 × 10 31 erg 4 × 10 31 erg

141.

C F · d s = 0.4687 C F · d s = 0.4687

143.

circulation = π a 2 and flux = 0 circulation = π a 2 and flux = 0

Section 6.4 Exercises

147.

C 2 x y d x + ( x + y ) d y = 32 3 C 2 x y d x + ( x + y ) d y = 32 3

149.

C sin x cos y d x + ( x y + cos x sin y ) d y = 1 12 C sin x cos y d x + ( x y + cos x sin y ) d y = 1 12

151.

C ( y d x + x d y ) = π C ( y d x + x d y ) = π

153.

C x e −2 x d x + ( x 4 + 2 x 2 y 2 ) d y = 0 C x e −2 x d x + ( x 4 + 2 x 2 y 2 ) d y = 0

155.

Cy3dxx3ydy=−20πCy3dxx3ydy=−20π

157.

C x 2 y d x + x y 2 d y = 8 π C x 2 y d x + x y 2 d y = 8 π

159.

C ( x 2 + y 2 ) d x + 2 x y d y = 0 C ( x 2 + y 2 ) d x + 2 x y d y = 0

161.

A = 19 π A = 19 π

163.

A = 3 8 π A = 3 8 π

165.

C + ( y 2 + x 3 ) d x + x 4 d y = 0 C + ( y 2 + x 3 ) d x + x 4 d y = 0

167.

A = 9 π 8 A = 9 π 8

169.

A = 8 3 5 A = 8 3 5

171.

C ( x 2 y 2 x y + y 2 ) d s = - 5 6 C ( x 2 y 2 x y + y 2 ) d s = - 5 6

173.

C x d x + y d y x 2 + y 2 = 2 π C x d x + y d y x 2 + y 2 = 2 π

175.

W = 225 2 W = 225 2

177.

W = 12 π W = 12 π

179.

W = 2 π W = 2 π

181.

C y 2 d x + x 2 d y = 1 3 C y 2 d x + x 2 d y = 1 3

183.

C 1 + x 3 d x + 2 x y d y = -3 C 1 + x 3 d x + 2 x y d y = -3

185.

C ( 3 y e sin x ) d x + ( 7 x + y 4 + 1 ) d y = 36 π C ( 3 y e sin x ) d x + ( 7 x + y 4 + 1 ) d y = 36 π

187.

C F · d r = 2 C F · d r = 2

189.

C ( y + x ) d x + ( x + sin y ) d y = 0 C ( y + x ) d x + ( x + sin y ) d y = 0

191.

C x y d x + x 3 y 3 d y = 22 21 C x y d x + x 3 y 3 d y = 22 21

193.

C F · d r = 15 π 4 C F · d r = 15 π 4

195.

C sin ( x + y ) d x + cos ( x + y ) d y = 4 C sin ( x + y ) d x + cos ( x + y ) d y = 4

197.

C F · d r = π C F · d r = π

199.

C F · n ^ d s = 4 C F · n ^ d s = 4

201.

C F · n d s = 0 C F · n d s = 0

203.

C [ y 3 + sin ( x y ) + x y cos ( x y ) ] d x + [ x 3 + x 2 cos ( x y ) ] d y = 4.7124 C [ y 3 + sin ( x y ) + x y cos ( x y ) ] d x + [ x 3 + x 2 cos ( x y ) ] d y = 4.7124

205.

C ( y + e x ) d x + ( 2 x + cos ( y 2 ) ) d y = 1 3 C ( y + e x ) d x + ( 2 x + cos ( y 2 ) ) d y = 1 3

Section 6.5 Exercises

207.

False

209.

True

211.

True

213.

curl F = i + x 2 j + y 2 k curl F = i + x 2 j + y 2 k

215.

curl F = ( x z 2 x y 2 ) i + ( x 2 y y z 2 ) j + ( y 2 z x 2 z ) k curl F = ( x z 2 x y 2 ) i + ( x 2 y y z 2 ) j + ( y 2 z x 2 z ) k

217.

curl F = i + j + k curl F = i + j + k

219.

curl F = y i z j x k curl F = y i z j x k

221.

curl F = 0 curl F = 0

223.

div F = 3 y z 2 + 2 y sin z + 2 x e 2 z div F = 3 y z 2 + 2 y sin z + 2 x e 2 z

225.

div F = 2 ( x + y + z ) div F = 2 ( x + y + z )

227.

div F = 1 x 2 + y 2 div F = 1 x 2 + y 2

229.

div F = a + b div F = a + b

231.

div F = x + y + z div F = x + y + z

233.

Harmonic

235.

div ( F × G ) = 2 z + 3 x div ( F × G ) = 2 z + 3 x

237.

div F = 2 r 2 div F = 2 r 2

239.

curl r = 0 curl r = 0

241.

curl r r 3 = 0 curl r r 3 = 0

243.

curl F = 2 x x 2 + y 2 k curl F = 2 x x 2 + y 2 k

245.

div F = 0 div F = 0

247.

div F = 2 2 e −6 div F = 2 2 e −6

249.

div F = 0 div F = 0

251.

curl F = j 3 k curl F = j 3 k

253.

curl F = 2 j k curl F = 2 j k

255.

a = 3 a = 3

257.

F is conservative.

259.

div F = cosh x + sinh y x y div F = cosh x + sinh y x y

261.

( b z c y ) i ( c x a z ) j + ( a y b x ) k ( b z c y ) i ( c x a z ) j + ( a y b x ) k

263.

curl F = 2 ω curl F = 2 ω

265.

F×GF×G does not have zero divergence.

267.

· F = −200 k [ 1 + 2 ( x 2 + y 2 + z 2 ) ] e x 2 + y 2 + z 2 · F = −200 k [ 1 + 2 ( x 2 + y 2 + z 2 ) ] e x 2 + y 2 + z 2

Section 6.6 Exercises

269.

True

271.

True

273.

r(u,v)=u,v,23u+2vr(u,v)=u,v,23u+2v for u<u< and v<.v<.

275.

r(u,v)=u,v,13(162u+4v)r(u,v)=u,v,13(162u+4v) for |u|<|u|< and |v|<.|v|<.

277.

r(u,v)=3cosu,3sinu,vr(u,v)=3cosu,3sinu,v for 0uπ2,0v30uπ2,0v3

279.

A = 87.9646 A = 87.9646

281.

S z d S = 8 π S z d S = 8 π

283.

S ( x 2 + y 2 ) z d S = 16 π S ( x 2 + y 2 ) z d S = 16 π

285.

S F · N d S = 4 π 3 S F · N d S = 4 π 3

287.

m 13.0639 m 13.0639

289.

m 228.5313 m 228.5313

291.

S g d S = 3 14 S g d S = 3 14

293.

S ( x 2 + y z ) d S 0.9617 S ( x 2 + y z ) d S 0.9617

295.

S ( x 2 + y 2 ) d S = 4 π 3 S ( x 2 + y 2 ) d S = 4 π 3

297.

S x 2 z d S = 1023 2 π 5 S x 2 z d S = 1023 2 π 5

299.

S ( z + y ) d S 10.1 S ( z + y ) d S 10.1

301.

m = π a 3 m = π a 3

303.

S F · N d S = 13 24 S F · N d S = 13 24

305.

S F · N d S = 3 4 S F · N d S = 3 4

307.

0 8 0 6 ( 4 3 y + 1 16 y 2 + z ) ( 1 4 17 ) d z d y 0 8 0 6 ( 4 3 y + 1 16 y 2 + z ) ( 1 4 17 ) d z d y

309.

0 2 0 6 [ x 2 2 ( 8 4 x ) + z ] 17 d z d x 0 2 0 6 [ x 2 2 ( 8 4 x ) + z ] 17 d z d x

311.

S ( x 2 z + y 2 z ) d S = π a 5 2 S ( x 2 z + y 2 z ) d S = π a 5 2

313.

S x 2 y z d S = 171 14 S x 2 y z d S = 171 14

315.

S y z d S = 2 π 4 S y z d S = 2 π 4

317.

S ( x i + y j ) · d S = 16 π S ( x i + y j ) · d S = 16 π

319.

m = π a 7 192 m = π a 7 192

321.

F 4.57 lb . F 4.57 lb .

323.

8 π a 8 π a

325.

The net flux is zero.

Section 6.7 Exercises

327.

S ( curl F · N ) d S = π a 2 S ( curl F · N ) d S = π a 2

329.

S ( curl F · N ) d S = 18 π S ( curl F · N ) d S = 18 π

331.

S ( curl F · N ) d S = −8 π S ( curl F · N ) d S = −8 π

333.

S ( curl F · N ) d S = 0 S ( curl F · N ) d S = 0

335.

0 0

337.

−9.4248 −9.4248

339.

S curl F · d S = 0 S curl F · d S = 0

341.

S curl F · d S = 2.6667 S curl F · d S = 2.6667

343.

S ( curl F · N ) d S = 1 6 S ( curl F · N ) d S = 1 6

345.

C ( 1 2 y 2 d x + z d y + x d z ) = π 4 C ( 1 2 y 2 d x + z d y + x d z ) = π 4

347.

S ( curl F · N ) d S = 3 π S ( curl F · N ) d S = 3 π

349.

C ( c k × R ) · d S = 2 π c C ( c k × R ) · d S = 2 π c

351.

S curl F · d S = 0 S curl F · d S = 0

353.

C F · d r = −4 C F · d r = −4

355.

S curl F · d S = 0 S curl F · d S = 0

357.

S curl F · d S = −36 π S curl F · d S = −36 π

359.

S curl F · N = 0 S curl F · N = 0

361.

C F · d r = 0 C F · d r = 0

363.

S curl ( F ) · d S = 84.8230 S curl ( F ) · d S = 84.8230

365.

A = S ( × F ) · n d S = 0 A = S ( × F ) · n d S = 0

367.

S ( × F ) · n d S = 2 π S ( × F ) · n d S = 2 π

369.

C = π ( cos φ sin φ ) C = π ( cos φ sin φ )

371.

C F · d r = 48 π C F · d r = 48 π

373.

S ( × F ) · n = 0 S ( × F ) · n = 0

375.

0

Section 6.8 Exercises

377.

S F · N d s = 75.3982 S F · N d s = 75.3982

379.

S F · N d s = 243 π 2 381 . 704 S F · N d s = 243 π 2 381 . 704

381.

S F · N d s = 37.6991 S F · N d s = 37.6991

383.

S F · N d s = 9 π a 4 2 S F · N d s = 9 π a 4 2

385.

S F · d S = π 3 S F · d S = π 3

387.

S F · d S = 0 S F · d S = 0

389.

S F · d S = 241.2743 S F · d S = 241.2743

391.

D F · d S = π D F · d S = π

393.

S F · d S = 2 π 3 S F · d S = 2 π 3

395.

16 6 π 16 6 π

397.

128 3 π 128 3 π

399.

−703.7168 −703.7168

401.

20

403.

S F · d S = 8 S F · d S = 8

405.

S F · N d S = 1 8 S F · N d S = 1 8

407.

S R R · n d S = 4 π a 4 S R R · n d S = 4 π a 4

409.

R z 2 d V = 4 π 15 R z 2 d V = 4 π 15

411.

S F · d S = 6.5759 S F · d S = 6.5759

413.

S F · d S = 21 S F · d S = 21

415.

S F · d S = 72 S F · d S = 72

417.

S F · d S = −33.5103 S F · d S = −33.5103

419.

S F · d S = π a 4 b 2 S F · d S = π a 4 b 2

421.

S F · d S = 5 2 π S F · d S = 5 2 π

423.

S F · d S = 21 π 2 S F · d S = 21 π 2

425.

( 1 e −1 ) ( 1 e −1 )

Review Exercises

427.

False

429.

False

431.


433.

Conservative, f(x,y)=xy2eyf(x,y)=xy2ey

435.

Conservative, f(x,y,z)=x2y+y2z+z2xf(x,y,z)=x2y+y2z+z2x

437.

16 3 16 3

439.

32 2 9 ( 3 3 1 ) 32 2 9 ( 3 3 1 )

441.

Divergence: ex+xexy+xyexyz,ex+xexy+xyexyz, curl: xzexyziyzexyzj+yexykxzexyziyzexyzj+yexyk

443.

−18 π −18 π

445.

π π

447.

24 π 24 π

449.

2 ( 2 2 + π ) = 4 + π 2 2 ( 2 2 + π ) = 4 + π 2

451.

8 π / 3 8 π / 3

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution-NonCommercial-ShareAlike License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:

    Access for free at https://openstax.org/books/calculus-volume-3/pages/1-introduction

  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:

    Access for free at https://openstax.org/books/calculus-volume-3/pages/1-introduction

Citation information

© Jul 24, 2025 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.