Skip to Content
OpenStax Logo
Buy book
  1. Preface
  2. 1 Parametric Equations and Polar Coordinates
    1. Introduction
    2. 1.1 Parametric Equations
    3. 1.2 Calculus of Parametric Curves
    4. 1.3 Polar Coordinates
    5. 1.4 Area and Arc Length in Polar Coordinates
    6. 1.5 Conic Sections
    7. Key Terms
    8. Key Equations
    9. Key Concepts
    10. Chapter Review Exercises
  3. 2 Vectors in Space
    1. Introduction
    2. 2.1 Vectors in the Plane
    3. 2.2 Vectors in Three Dimensions
    4. 2.3 The Dot Product
    5. 2.4 The Cross Product
    6. 2.5 Equations of Lines and Planes in Space
    7. 2.6 Quadric Surfaces
    8. 2.7 Cylindrical and Spherical Coordinates
    9. Key Terms
    10. Key Equations
    11. Key Concepts
    12. Chapter Review Exercises
  4. 3 Vector-Valued Functions
    1. Introduction
    2. 3.1 Vector-Valued Functions and Space Curves
    3. 3.2 Calculus of Vector-Valued Functions
    4. 3.3 Arc Length and Curvature
    5. 3.4 Motion in Space
    6. Key Terms
    7. Key Equations
    8. Key Concepts
    9. Chapter Review Exercises
  5. 4 Differentiation of Functions of Several Variables
    1. Introduction
    2. 4.1 Functions of Several Variables
    3. 4.2 Limits and Continuity
    4. 4.3 Partial Derivatives
    5. 4.4 Tangent Planes and Linear Approximations
    6. 4.5 The Chain Rule
    7. 4.6 Directional Derivatives and the Gradient
    8. 4.7 Maxima/Minima Problems
    9. 4.8 Lagrange Multipliers
    10. Key Terms
    11. Key Equations
    12. Key Concepts
    13. Chapter Review Exercises
  6. 5 Multiple Integration
    1. Introduction
    2. 5.1 Double Integrals over Rectangular Regions
    3. 5.2 Double Integrals over General Regions
    4. 5.3 Double Integrals in Polar Coordinates
    5. 5.4 Triple Integrals
    6. 5.5 Triple Integrals in Cylindrical and Spherical Coordinates
    7. 5.6 Calculating Centers of Mass and Moments of Inertia
    8. 5.7 Change of Variables in Multiple Integrals
    9. Key Terms
    10. Key Equations
    11. Key Concepts
    12. Chapter Review Exercises
  7. 6 Vector Calculus
    1. Introduction
    2. 6.1 Vector Fields
    3. 6.2 Line Integrals
    4. 6.3 Conservative Vector Fields
    5. 6.4 Green’s Theorem
    6. 6.5 Divergence and Curl
    7. 6.6 Surface Integrals
    8. 6.7 Stokes’ Theorem
    9. 6.8 The Divergence Theorem
    10. Key Terms
    11. Key Equations
    12. Key Concepts
    13. Chapter Review Exercises
  8. 7 Second-Order Differential Equations
    1. Introduction
    2. 7.1 Second-Order Linear Equations
    3. 7.2 Nonhomogeneous Linear Equations
    4. 7.3 Applications
    5. 7.4 Series Solutions of Differential Equations
    6. Key Terms
    7. Key Equations
    8. Key Concepts
    9. Chapter Review Exercises
  9. A | Table of Integrals
  10. B | Table of Derivatives
  11. C | Review of Pre-Calculus
  12. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
  13. Index

Checkpoint

5.1

V=i=12j=12f(xij*,yij*)ΔA=0V=i=12j=12f(xij*,yij*)ΔA=0

5.2

a. 26 b. Answers may vary.

5.3

1340313403

5.4

4ln5ln54ln5ln5

5.5

π2π2

5.6

Answers to both parts a. and b. may vary.

5.7

Type I and Type II are expressed as {(x,y)|0x2,x2y2x}{(x,y)|0x2,x2y2x} and {(x,y)|0y4,12yxy},{(x,y)|0y4,12yxy}, respectively.

5.8

π/4π/4

5.9

{(x,y)|0y1,1xey}{(x,y)|1ye,1x2}{(x,y)|eye2,lnyx2}{(x,y)|0y1,1xey}{(x,y)|1ye,1x2}{(x,y)|eye2,lnyx2}

5.10

Same as in the example shown.

5.11

2163521635

5.12

e24+10e494e24+10e494 cubic units

5.13

814814 square units

5.14

3434

5.15

π4π4

5.16

55720.763855720.7638

5.17

143143

5.18

8π8π

5.19

π/8π/8

5.20

V=02π022(162r2)rdrdθ=64πV=02π022(162r2)rdrdθ=64π cubic units

5.21

A=2π/2π/61+sinθ33sinθrdrdθ=8π+93A=2π/2π/61+sinθ33sinθrdrdθ=8π+93

5.22

π4π4

5.23

BzsinxcosydV=8BzsinxcosydV=8

5.24

E1dV=8x=−3x=3y=9x2y=9x2z=9x2y2z=9x2y21dzdydx=36π.E1dV=8x=−3x=3y=9x2y=9x2z=9x2y2z=9x2y21dzdydx=36π.

5.25

(i) z=0z=4x=0x=4zy=x2y=4zf(x,y,z)dydxdz,z=0z=4x=0x=4zy=x2y=4zf(x,y,z)dydxdz, (ii) y=0y=4z=0z=4yx=0x=yf(x,y,z)dxdzdy,y=0y=4z=0z=4yx=0x=yf(x,y,z)dxdzdy, (iii) y=0y=4x=0x=yz=0z=4yf(x,y,z)dzdxdy,y=0y=4x=0x=yz=0z=4yf(x,y,z)dzdxdy, (iv) x=0x=2y=x2y=4z=0z=4yf(x,y,z)dzdydx,x=0x=2y=x2y=4z=0z=4yf(x,y,z)dzdydx, (v) x=0x=2z=0z=4x2y=x2y=4zf(x,y,z)dydzdxx=0x=2z=0z=4x2y=x2y=4zf(x,y,z)dydzdx

5.26

fave=8fave=8

5.27

88

5.28

Ef(r,θ,z)rdzdrdθ=θ=0θ=πr=0r=2sinθz=0z=4rsinθf(r,θ,z)rdzdrdθ.Ef(r,θ,z)rdzdrdθ=θ=0θ=πr=0r=2sinθz=0z=4rsinθf(r,θ,z)rdzdrdθ.

5.29

E={(r,θ,z)|0θ2π,0z1,zr2z2}E={(r,θ,z)|0θ2π,0z1,zr2z2} and V=r=0r=1z=rz=2r2θ=0θ=2πrdθdzdr.V=r=0r=1z=rz=2r2θ=0θ=2πrdθdzdr.

5.30

E2={(r,θ,z)|0θ2π,0r1,rz4r2}E2={(r,θ,z)|0θ2π,0r1,rz4r2} and V=r=0r=1z=rz=4r2θ=0θ=2πrdθdzdr.V=r=0r=1z=rz=4r2θ=0θ=2πrdθdzdr.

5.31

V(E)=θ=0θ=2πϕ=0φ=π/3ρ=0ρ=2ρ2sinφdρdφdθV(E)=θ=0θ=2πϕ=0φ=π/3ρ=0ρ=2ρ2sinφdρdφdθ

5.32

Rectangular: x=−2x=2y=4x2y=4x2z=4x2y2z=4x2y2dzdydxx=−1x=1y=1x2y=1x2z=4x2y2z=4x2y2dzdydx.x=−2x=2y=4x2y=4x2z=4x2y2z=4x2y2dzdydxx=−1x=1y=1x2y=1x2z=4x2y2z=4x2y2dzdydx.
Cylindrical: θ=0θ=2πr=1r=2z=4r2z=4r2rdzdrdθ.θ=0θ=2πr=1r=2z=4r2z=4r2rdzdrdθ.
Spherical: φ=π/6φ=5π/6θ=0θ=2πρ=cscφρ=2ρ2sinφdρdθdφ.φ=π/6φ=5π/6θ=0θ=2πρ=cscφρ=2ρ2sinφdρdθdφ.

5.33

9π8kg9π8kg

5.34

Mx=81π64Mx=81π64 and My=81π64My=81π64

5.35

x=Mym=81π/649π/8=98x=Mym=81π/649π/8=98 and y=Mxm=81π/649π/8=98.y=Mxm=81π/649π/8=98.

5.36

x=Mym=1/201/12=35x=Mym=1/201/12=35 and y=Mxm=1/241/12=12y=Mxm=1/241/12=12

5.37

xc=Mym=1/151/6=25andyc=Mxm=1/121/6=12xc=Mym=1/151/6=25andyc=Mxm=1/121/6=12

5.38

Ix=x=0x=2y=0y=xy2xydydx=6435Ix=x=0x=2y=0y=xy2xydydx=6435 and Iy=x=0x=2y=0y=xx2xydydx=6435.Iy=x=0x=2y=0y=xx2xydydx=6435. Also, I0=x=0x=2y=0y=x(x2+y2)xydydx=12821.I0=x=0x=2y=0y=x(x2+y2)xydydx=12821.

5.39

Rx=63535,Rx=63535, Ry=61515,Ry=61515, and R0=4427.R0=4427.

5.40

5435=1.5435435=1.543

5.41

(32,98,12)(32,98,12)

5.42

The moments of inertia of the tetrahedron QQ about the yz-plane,yz-plane, the xz-plane,xz-plane, and the xy-planexy-plane are 99/35,36/7,and243/35,99/35,36/7,and243/35, respectively.

5.43

T−1(x,y)=(u,v)T−1(x,y)=(u,v) where u=3xy3u=3xy3 and v=y3v=y3

5.44

J(u,v)=(x,y)(u,v)=|xuxvyuyv|=|1102|=2J(u,v)=(x,y)(u,v)=|xuxvyuyv|=|1102|=2

5.45

0π/201r3drdθ0π/201r3drdθ

5.46

x=12(v+u)x=12(v+u) and y=12(vu)y=12(vu) and −44−224u2(12)dudv.−44−224u2(12)dudv.

5.47

12(sin22)12(sin22)

5.48

030212(v3+vw3u)dudvdw=2+ln8030212(v3+vw3u)dudvdw=2+ln8

Section 5.1 Exercises

1.

27.

3.

0.

5.

21.3.

7.

a. 28 ft3ft3 b. 1.75 ft.

9.

a. 0.1120.112 b. fave0.175;fave0.175; here f(0.4,0.2)0.1,f(0.4,0.2)0.1, f(0.2,0.6)−0.2,f(0.2,0.6)−0.2, f(0.8,0.2)0.6,f(0.8,0.2)0.6, and f(0.8,0.6)0.2.f(0.8,0.6)0.2.

11.

2π.2π.

13.

40.

15.

812+3923.812+3923.

17.

e1.e1.

19.

151029.151029.

21.

0.

23.

(e1)(1+sin1cos1).(e1)(1+sin1cos1).

25.

34ln(53)+2ln22ln2.34ln(53)+2ln22ln2.

27.

18[(233)π+6ln2].18[(233)π+6ln2].

29.

14e4(e41).14e4(e41).

31.

4(e1)(2e).4(e1)(2e).

33.

π4+ln(54)12ln2+arctan2.π4+ln(54)12ln2+arctan2.

35.

12.12.

37.

12(2cosh1+cosh23).12(2cosh1+cosh23).

49.

a. f(x,y)=12xy(x2+y2)f(x,y)=12xy(x2+y2) b. V=0101f(x,y)dxdy=18V=0101f(x,y)dxdy=18 c. fave=18;fave=18;
d.

In xyz space, a plane is formed at z = 1/8, and there is another shape that starts at the origin, increases through the plane in a line roughly running from (1, 0.25, 0.125) to (0.25, 1, 0.125), and then rapidly increases to (1, 1, 1).
53.

a. For m=n=2,m=n=2, I=4e−0.52.43I=4e−0.52.43 b. fave=e−0.50.61;fave=e−0.50.61;
c.

In xyz space, a plane is formed at z = 0.61, and there is another shape with maximum roughly at (0, 0, 0.92), which decreases along all the sides to the points (plus or minus 1, plus or minus 1, 0.12).
55.

a. 2n+1+142n+1+14 b. 1414

59.

56.5°56.5° F; here f(x1*,y1*)=71,f(x1*,y1*)=71, f(x2*,y1*)=72,f(x2*,y1*)=72, f(x2*,y1*)=40,f(x2*,y1*)=40, f(x2*,y2*)=43,f(x2*,y2*)=43, where xi*xi* and yj*yj* are the midpoints of the subintervals of the partitions of [a,b][a,b] and [c,d],[c,d], respectively.

Section 5.2 Exercises

61.

27202720

63.

Type I but not Type II

65.

π2π2

67.

16(8+3π)16(8+3π)

69.

1000310003

71.

Type I and Type II

73.

The region DD is not of Type I: it does not lie between two vertical lines and the graphs of two continuous functions g1(x)g1(x) and g2(x).g2(x). The region DD is not of Type II: it does not lie between two horizontal lines and the graphs of two continuous functions h1(y)h1(y) and h2(y).h2(y).

75.

π2π2

77.

00

79.

2323

81.

41204120

83.

−63−63

85.

ππ

87.

a. Answers may vary; b. 2323

89.

a. Answers may vary; b. 812812

91.

8π38π3

93.

e32e32

95.

2323

97.

01x11xxdydx=−100y+1xdxdy+0101yxdxdy=1301x11xxdydx=−100y+1xdxdy+0101yxdxdy=13

99.

1/21/2y2+1y2+1ydxdy=12x21x21ydydx=01/21/2y2+1y2+1ydxdy=12x21x21ydydx=0

101.

D(x2y2)dA=−11y411y4(x2y2)dxdy=4644095D(x2y2)dA=−11y411y4(x2y2)dxdy=4644095

103.

4545

105.

5π325π32

109.

11

111.

22

113.

a. 13;13; b. 16;16; c. 1616

115.

a. 43;43; b. 2π;2π; c. 6π436π43

117.

0and0.865474;0and0.865474; A(D)=0.621135A(D)=0.621135

119.

P[X+Y6]=1+32e25e6/50.45;P[X+Y6]=1+32e25e6/50.45; there is a 45%45% chance that a customer will spend 66 minutes in the drive-thru line.

Section 5.3 Exercises

123.

D={(r,θ)|4r5,π2θπ}D={(r,θ)|4r5,π2θπ}

125.

D={(r,θ)|0r2,0θπ}D={(r,θ)|0r2,0θπ}

127.

D={(r,θ)|0r4sinθ,0θπ}D={(r,θ)|0r4sinθ,0θπ}

129.

D={(r,θ)|3r5,π4θπ2}D={(r,θ)|3r5,π4θπ2}

131.

D={(r,θ)|3r5,3π4θ5π4}D={(r,θ)|3r5,3π4θ5π4}

133.

D={(r,θ)|0rtanθsecθ,0θπ4}D={(r,θ)|0rtanθsecθ,0θπ4}

135.

00

137.

63π1663π16

139.

3367π183367π18

141.

35π257635π2576

143.

7576π2(21e+e4)7576π2(21e+e4)

145.

54ln(3+22)54ln(3+22)

147.

16(22)16(22)

149.

0π02r5drdθ=32π30π02r5drdθ=32π3

151.

π/2π/204rsin(r2)drdθ=πsin28π/2π/204rsin(r2)drdθ=πsin28

153.

3π43π4

155.

π2π2

157.

13(4π33)13(4π33)

159.

163π163π

161.

π18π18

163.

a. 2π3;2π3; b. π2;π2; c. π6π6

165.

256π3cm3256π3cm3

167.

3π323π32

169.

4π4π

171.

π4π4

173.

12πe(e1)12πe(e1)

175.

3π43π4

177.

133π3864133π3864

Section 5.4 Exercises

181.

192192

183.

00

185.

122301(x2+lny+z)dzdxdy=356+2ln2122301(x2+lny+z)dzdxdy=356+2ln2

187.

1304−12(x2z+1y)dzdxdy=64+12ln31304−12(x2z+1y)dzdxdy=64+12ln3

191.

77127712

193.

22

195.

439120439120

197.

00

199.

6410564105

201.

11261126

203.

113450113450

205.

1160(6341)1160(6341)

207.

3π23π2

209.

12501250

211.

05−3309y2zdzdydx=9005−3309y2zdzdydx=90

213.

V=5.33V=5.33

A complex shape that starts at the origin and reaches its maximum at (negative 2, negative 2, 8). The shape is truncated by the x = y plane, the x = 0 plane, the y = negative 2 plane, the z = 0 plane, and a complex triangular-like shape with curved edges and sides (negative 2, negative 2, 8), (0, 0, 0), and (0, negative 2, 4).
215.

011324(y2z2+1)dzdxdy;011324(y2z2+1)dzdxdy; 011324(x2y2+1)dydzdx011324(x2y2+1)dydzdx

219.

V=aaa2z2a2z2x2+z2a2dydxdzV=aaa2z2a2z2x2+z2a2dydxdz

221.

9292

223.

15651565

225.

a. Answers may vary; b. 12831283

227.

a. 040r2x20r2x2y2dzdydx;040r2x20r2x2y2dzdydx; b. 020r2y20r2x2y2dzdxdy,020r2y20r2x2y2dzdxdy, 0r0r2z20r2x2z2dydxdz,0r0r2z20r2x2z2dydxdz, 0r0r2x20r2x2z2dydzdx,0r0r2x20r2x2z2dydzdx, 0r0r2z20r2y2z2dxdydz,0r0r2z20r2y2z2dxdydz, 0r0r2y20r2y2z2dxdzdy0r0r2y20r2y2z2dxdzdy

229.

33

231.

25032503

233.

5160.3135160.313

235.

352352

Section 5.5 Exercises

241.

9π89π8

243.

1818

245.

πe26πe26

249.

a. E={(r,θ,z)|0θπ,0r4sinθ,0z16r2};E={(r,θ,z)|0θπ,0r4sinθ,0z16r2}; b. 0π04sinθ016r2f(r,θ,z)rdzdrdθ0π04sinθ016r2f(r,θ,z)rdzdrdθ

251.

a. E={(r,θ,z)|0θπ2,0r3,9r2z10r(cosθ+sinθ)};E={(r,θ,z)|0θπ2,0r3,9r2z10r(cosθ+sinθ)}; b. 0π/2039r210r(cosθ+sinθ)f(r,θ,z)rdzdrdθ0π/2039r210r(cosθ+sinθ)f(r,θ,z)rdzdrdθ

253.

a. E={(r,θ,z)|0r3,0θπ2,0zrcosθ+3},E={(r,θ,z)|0r3,0θπ2,0zrcosθ+3}, f(r,θ,z)=1rcosθ+3;f(r,θ,z)=1rcosθ+3; b. 030π/20rcosθ+3rrcosθ+3dzdθdr=9π4030π/20rcosθ+3rrcosθ+3dzdθdr=9π4

255.

a. y=rcosθ,z=rsinθ,x=z,y=rcosθ,z=rsinθ,x=z, E={(r,θ,z)|1r3,0θ2π,0z1r2},f(r,θ,z)=z;E={(r,θ,z)|1r3,0θ2π,0z1r2},f(r,θ,z)=z; b. 1302π01r2zrdzdθdr=356π31302π01r2zrdzdθdr=356π3

257.

ππ

259.

π3π3

261.

ππ

263.

4π34π3

265.

V=π120.2618V=π120.2618

A quarter section of an ellipsoid with width 2, height 1, and depth 1.
267.

010πr2rzr2cosθdzdθdr010πr2rzr2cosθdzdθdr

269.

180π10180π10

271.

81π(π2)1681π(π2)16

277.

a. f(ρ,θ,φ)=ρsinφ(cosθ+sinθ),f(ρ,θ,φ)=ρsinφ(cosθ+sinθ), E={(ρ,θ,φ)|1ρ2,0θπ,0φπ2};E={(ρ,θ,φ)|1ρ2,0θπ,0φπ2}; b. 0π0π/212ρ3cosφsinφdρdφdθ=15π80π0π/212ρ3cosφsinφdρdφdθ=15π8

279.

a. f(ρ,θ,φ)=ρcosφ;f(ρ,θ,φ)=ρcosφ; E={(ρ,θ,φ)|0ρ2cosφ,0θπ2,0φπ4};E={(ρ,θ,φ)|0ρ2cosφ,0θπ2,0φπ4}; b. 0π/20π/402cosφρ3sinφcosφdρdφdθ=7π240π/20π/402cosφρ3sinφcosφdρdφdθ=7π24

281.

π4π4

283.

9π(21)9π(21)

285.

0π/20π/204ρ6sinφdρdφdθ0π/20π/204ρ6sinφdρdφdθ

287.

V=4π337.255V=4π337.255

A sphere of radius 1 with a hole drilled into it of radius 0.5.
289.

343π32343π32

291.

02π2416r216r2rdzdrdθ;02π2416r216r2rdzdrdθ; π/65π/602π2cscφ4ρ2sinρdρdθdφπ/65π/602π2cscφ4ρ2sinρdρdθdφ

293.

P=32P0π3P=32P0π3 watts

295.

Q=kr4πμCQ=kr4πμC

Section 5.6 Exercises

297.

272272

299.

242242

301.

7676

303.

8π8π

305.

π2π2

307.

22

309.

a. Mx=815,My=1625;Mx=815,My=1625; b. x=125,y=65;x=125,y=65;
c.

A triangular region R bounded by the x and y axes and the line y = negative x/2 + 3, with a point marked at (12/5, 6/5).
311.

a. Mx=21625,My=43225;Mx=21625,My=43225; b. x=185,y=95;x=185,y=95;
c.

A rectangle R bounded by the x and y axes and the lines x = 6 and y = 3 with point marked (18/5, 9/5).
313.

a. Mx=3685,My=15525;Mx=3685,My=15525; b. x=9295,y=38895;x=9295,y=38895;
c.

A trapezoid R bounded by the x and y axes, the line y = 2, and the line y = negative x/4 + 2.5 with the point marked (92/95, 388/95).
315.

a. Mx=16π,My=8π;Mx=16π,My=8π; b. x=1,y=2;x=1,y=2;
c.

A circle with radius 2 centered at (1, 2), which is tangent to the x axis at (1, 0) and has pointed marked at the center (1, 2).
317.

a. Mx=0,My=0;Mx=0,My=0; b. x=0,y=0;x=0,y=0;
c.

An ellipse R with center the origin, major axis 2, and minor axis 0.5, with point marked at the origin.
319.

a. Mx=2,My=0;Mx=2,My=0; b. x=0,y=1;x=0,y=1;
c.

A square R with side length square root of 2 rotated 45 degrees, with corners at the origin, (2, 0), (1, 1), and (negative 1, 1). A point is marked at (0, 1).
321.

a. Ix=24310,Iy=4865,andI0=2432;Ix=24310,Iy=4865,andI0=2432; b. Rx=355,Ry=655,andR0=3Rx=355,Ry=655,andR0=3

323.

a. Ix=259227,Iy=64827,andI0=324027;Ix=259227,Iy=64827,andI0=324027; b. Rx=6217,Ry=3217,andR0=31057Rx=6217,Ry=3217,andR0=31057

325.

a. Ix=88,Iy=1560,andI0=1648;Ix=88,Iy=1560,andI0=1648; b. Rx=41819,Ry=741019,Rx=41819,Ry=741019, and R0=2195719R0=2195719

327.

a. Ix=128π3,Iy=56π3,andI0=184π3;Ix=128π3,Iy=56π3,andI0=184π3; b. Rx=433,Ry=213,Rx=433,Ry=213, and R0=693R0=693

329.

a. Ix=π32,Iy=π8,andI0=5π32;Ix=π32,Iy=π8,andI0=5π32; b. Rx=14,Ry=12,andR0=54Rx=14,Ry=12,andR0=54

331.

a. Ix=73,Iy=13,andI0=83;Ix=73,Iy=13,andI0=83; b. Rx=426,Ry=66,andR0=233Rx=426,Ry=66,andR0=233

333.

m=13m=13

337.

a. m=9π4;m=9π4; b. Mxy=3π2,Mxz=818,Myz=818;Mxy=3π2,Mxz=818,Myz=818; c. x=92π,y=92π,z=23;x=92π,y=92π,z=23; d. the solid QQ and its center of mass are shown in the following figure.

A quarter cylinder in the first quadrant with height 1 and radius 3. A point is marked at (9/(2 pi), 9/(2 pi), 2/3).
339.

a. x=322π,y=3(22)2π,z=0;x=322π,y=3(22)2π,z=0; b. the solid QQ and its center of mass are shown in the following figure.

A wedge from a cylinder in the first quadrant with height 2, radius 1, and angle roughly 45 degrees. A point is marked at (3 times the square root of 2/(2 pi), 3 times (2 minus the square root of 2)/(2 pi), 0).
343.

n=−2n=−2

349.

a. ρ(x,y,z)=x2+y2;ρ(x,y,z)=x2+y2; b. 16π716π7

351.

Mxy=π(f(0)f(a)+af(a))Mxy=π(f(0)f(a)+af(a))

355.

Ix=Iy=Iz0.84Ix=Iy=Iz0.84

Section 5.7 Exercises

357.

a. T(u,v)=(g(u,v),h(u,v)),x=g(u,v)=u2T(u,v)=(g(u,v),h(u,v)),x=g(u,v)=u2 and y=h(u,v)=v3.y=h(u,v)=v3. The functions gg and hh are continuous and differentiable, and the partial derivatives gu(u,v)=12,gu(u,v)=12, gv(u,v)=0,hu(u,v)=0andhv(u,v)=13gv(u,v)=0,hu(u,v)=0andhv(u,v)=13 are continuous on S;S; b. T(0,0)=(0,0),T(0,0)=(0,0), T(1,0)=(12,0),T(0,1)=(0,13),T(1,0)=(12,0),T(0,1)=(0,13), and T(1,1)=(12,13);T(1,1)=(12,13); c. RR is the rectangle of vertices (0,0),(12,0),(12,13),and(0,13)(0,0),(12,0),(12,13),and(0,13) in the xy-plane;xy-plane; the following figure.

A rectangle with one corner at the origin, horizontal length 0.5, and vertical height 0.34.
359.

a. T(u,v)=(g(u,v),h(u,v)),x=g(u,v)=2uv,T(u,v)=(g(u,v),h(u,v)),x=g(u,v)=2uv, and y=h(u,v)=u+2v.y=h(u,v)=u+2v. The functions gg and hh are continuous and differentiable, and the partial derivatives gu(u,v)=2,gu(u,v)=2, gv(u,v)=−1,gv(u,v)=−1, hu(u,v)=1,hu(u,v)=1, and hv(u,v)=2hv(u,v)=2 are continuous on S;S; b. T(0,0)=(0,0),T(0,0)=(0,0), T(1,0)=(2,1),T(1,0)=(2,1), T(0,1)=(−1,2),T(0,1)=(−1,2), and T(1,1)=(1,3);T(1,1)=(1,3); c. RR is the parallelogram of vertices (0,0),(2,1),(1,3),and(−1,2)(0,0),(2,1),(1,3),and(−1,2) in the xy-plane;xy-plane; see the following figure.

A square of side length square root of 5 with one corner at the origin and another at (2, 1).
361.

a. T(u,v)=(g(u,v),h(u,v)),x=g(u,v)=u3,T(u,v)=(g(u,v),h(u,v)),x=g(u,v)=u3, and y=h(u,v)=v3.y=h(u,v)=v3. The functions gg and hh are continuous and differentiable, and the partial derivatives gu(u,v)=3u2,gu(u,v)=3u2, gv(u,v)=0,gv(u,v)=0, hu(u,v)=0,hu(u,v)=0, and hv(u,v)=3v2hv(u,v)=3v2 are continuous on S;S; b. T(0,0)=(0,0),T(0,0)=(0,0), T(1,0)=(1,0),T(1,0)=(1,0), T(0,1)=(0,1),T(0,1)=(0,1), and T(1,1)=(1,1);T(1,1)=(1,1); c. RR is the unit square in the xy-plane;xy-plane; see the figure in the answer to the previous exercise.

363.

TT is not one-to-one: two points of SS have the same image. Indeed, T(−2,0)=T(2,0)=(16,4).T(−2,0)=T(2,0)=(16,4).

365.

TT is one-to-one: We argue by contradiction. T(u1,v1)=T(u2,v2)T(u1,v1)=T(u2,v2) implies 2u1v1=2u2v22u1v1=2u2v2 and u1=u2.u1=u2. Thus, u1=u2u1=u2 and v1=v2.v1=v2.

367.

TT is not one-to-one: T(1,v,w)=(−1,v,w)T(1,v,w)=(−1,v,w)

369.

u=x2y3,v=x+y3u=x2y3,v=x+y3

371.

u=ex,v=ex+yu=ex,v=ex+y

373.

u=xy+z2,v=x+yz2,w=x+y+z2u=xy+z2,v=x+yz2,w=x+y+z2

375.

S={(u,v)|u2+v21}S={(u,v)|u2+v21}

377.

R={(u,v,w)|u2v2w21,w>0}R={(u,v,w)|u2v2w21,w>0}

379.

3232

381.

−1−1

383.

2uv2uv

385.

vu2vu2

387.

22

389.

a. T(u,v)=(2u+v,3v);T(u,v)=(2u+v,3v); b. The area of RR is
A(R)=03y/3(6y)/3dxdy=0101u|(x,y)(u,v)|dvdu=0101u6dvdu=3.A(R)=03y/3(6y)/3dxdy=0101u|(x,y)(u,v)|dvdu=0101u6dvdu=3.

391.

1414

393.

−1+cos2−1+cos2

395.

π15π15

397.

315315

399.

T(r,θ,z)=(rcosθ,rsinθ,z);S=[0,3]×[0,π2]×[0,1]T(r,θ,z)=(rcosθ,rsinθ,z);S=[0,3]×[0,π2]×[0,1] in the rθz-spacerθz-space

403.

The area of RR is 1046;1046; the boundary curves of RR are graphed in the following figure.

Four lines are drawn, namely, y = 3, y = 2, y = 3/(x squared), and y = 2/(x squared). The lines y = 3 and y = 2 are parallel to each other. The lines y = 3/(x squared) and y = 2/(x squared) are curves that run somewhat parallel to each other.
405.

88

409.

a. R={(x,y)|y2+x22y4x+10};R={(x,y)|y2+x22y4x+10}; b. RR is graphed in the following figure;

A circle with radius 2 and center (2, 1).


c. 3.163.16

411.

a. T0,2T3,0(u,v)=(u+3v,2u+7v);T0,2T3,0(u,v)=(u+3v,2u+7v); b. The image SS is the quadrilateral of vertices (0,0),(3,7),(2,4),and(4,9);(0,0),(3,7),(2,4),and(4,9); c. SS is graphed in the following figure;

A four-sided figure with points the origin, (2, 4), (4, 9), and (3, 7).


d. 3232

413.

26623π282.45in326623π282.45in3

415.

A(R)83,999.2A(R)83,999.2

Chapter Review Exercises

417.

True.

419.

False.

421.

0

423.

1414

425.

1.475

427.

523π523π

429.

π16π16

431.

93.291

433.

(815,815)(815,815)

435.

(0,0,85)(0,0,85)

437.

1.452π×10151.452π×1015 ft-lb

439.

y=−1.238×10−7x3+0.001196x23.666x+7208;y=−1.238×10−7x3+0.001196x23.666x+7208; average temperature approximately 2800°C2800°C

441.

π3π3

Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution-NonCommercial-ShareAlike License 4.0 and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/calculus-volume-3/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/calculus-volume-3/pages/1-introduction
Citation information

© Mar 30, 2016 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.