Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Organic Chemistry

Why This Chapter?

Organic ChemistryWhy This Chapter?

The photo shows a painting in which a barber is shaving the beard of a man in the salon while other customers are waiting.
Figure 16.1 In the 19th and early-20th centuries, benzene was used as an aftershave lotion because of its pleasant smell and as a solvent to decaffeinate coffee beans. Neither is a good idea. (credit: modification of work “Ye Old Way” by Geo. H. Walker & Co./Library of Congress)

16 • Why This Chapter?

This chapter continues the coverage of aromatic molecules begun in the preceding chapter, but we’ll shift focus to concentrate on reactions, looking at the relationship between aromatic structure and reactivity. This relationship is critical in understanding how many biological molecules and pharmaceutical agents are synthesized and why they behave as they do.

In the preceding chapter, we looked at aromaticity—the stability associated with benzene and related compounds that contain a cyclic conjugated system of 4n + 2 π electrons. In this chapter, we’ll look at some of the unique reactions that aromatic molecules undergo.

The most common reaction of aromatic compounds is electrophilic aromatic substitution, in which an electrophile (E+) reacts with an aromatic ring and substitutes for one of the hydrogens. The reaction is characteristic of all aromatic rings, not just benzene and substituted benzenes. In fact, the ability of a compound to undergo electrophilic substitution is a good test of aromaticity.

Benzene reacts with E plus to form benzene with E at C 1 with the release of H plus.

Many different substituents can be introduced onto an aromatic ring through electrophilic substitution. To list some possibilities, an aromatic ring can be substituted by a halogen (–Cl, –Br, –I), a nitro group (–NO2), a sulfonic acid group (–SO3H), a hydroxyl group (–OH), an alkyl group (–R), or an acyl group (–COR). Starting from only a few simple materials, it’s possible to prepare many thousands of substituted aromatic compounds.

Aromatic ring undergoes acylation, alkylation, hydroxylation, sulfonation, nitration, and halogenation reactions to form respective products.
Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution-NonCommercial-ShareAlike License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/organic-chemistry/pages/1-why-this-chapter
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/organic-chemistry/pages/1-why-this-chapter
Citation information

© Aug 5, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.