Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Organic Chemistry

16.4 Substituent Effects in Electrophilic Substitutions

Organic Chemistry16.4 Substituent Effects in Electrophilic Substitutions

Table of contents
  1. Dedication and Preface
  2. 1 Structure and Bonding
    1. Why This Chapter?
    2. 1.1 Atomic Structure: The Nucleus
    3. 1.2 Atomic Structure: Orbitals
    4. 1.3 Atomic Structure: Electron Configurations
    5. 1.4 Development of Chemical Bonding Theory
    6. 1.5 Describing Chemical Bonds: Valence Bond Theory
    7. 1.6 sp3 Hybrid Orbitals and the Structure of Methane
    8. 1.7 sp3 Hybrid Orbitals and the Structure of Ethane
    9. 1.8 sp2 Hybrid Orbitals and the Structure of Ethylene
    10. 1.9 sp Hybrid Orbitals and the Structure of Acetylene
    11. 1.10 Hybridization of Nitrogen, Oxygen, Phosphorus, and Sulfur
    12. 1.11 Describing Chemical Bonds: Molecular Orbital Theory
    13. 1.12 Drawing Chemical Structures
    14. Chemistry Matters—Organic Foods: Risk versus Benefit
    15. Key Terms
    16. Summary
    17. Additional Problems
  3. 2 Polar Covalent Bonds; Acids and Bases
    1. Why This Chapter?
    2. 2.1 Polar Covalent Bonds and Electronegativity
    3. 2.2 Polar Covalent Bonds and Dipole Moments
    4. 2.3 Formal Charges
    5. 2.4 Resonance
    6. 2.5 Rules for Resonance Forms
    7. 2.6 Drawing Resonance Forms
    8. 2.7 Acids and Bases: The Brønsted–Lowry Definition
    9. 2.8 Acid and Base Strength
    10. 2.9 Predicting Acid–Base Reactions from pKa Values
    11. 2.10 Organic Acids and Organic Bases
    12. 2.11 Acids and Bases: The Lewis Definition
    13. 2.12 Noncovalent Interactions between Molecules
    14. Chemistry Matters—Alkaloids: From Cocaine to Dental Anesthetics
    15. Key Terms
    16. Summary
    17. Additional Problems
  4. 3 Organic Compounds: Alkanes and Their Stereochemistry
    1. Why This Chapter?
    2. 3.1 Functional Groups
    3. 3.2 Alkanes and Alkane Isomers
    4. 3.3 Alkyl Groups
    5. 3.4 Naming Alkanes
    6. 3.5 Properties of Alkanes
    7. 3.6 Conformations of Ethane
    8. 3.7 Conformations of Other Alkanes
    9. Chemistry Matters—Gasoline
    10. Key Terms
    11. Summary
    12. Additional Problems
  5. 4 Organic Compounds: Cycloalkanes and Their Stereochemistry
    1. Why This Chapter?
    2. 4.1 Naming Cycloalkanes
    3. 4.2 Cis–Trans Isomerism in Cycloalkanes
    4. 4.3 Stability of Cycloalkanes: Ring Strain
    5. 4.4 Conformations of Cycloalkanes
    6. 4.5 Conformations of Cyclohexane
    7. 4.6 Axial and Equatorial Bonds in Cyclohexane
    8. 4.7 Conformations of Monosubstituted Cyclohexanes
    9. 4.8 Conformations of Disubstituted Cyclohexanes
    10. 4.9 Conformations of Polycyclic Molecules
    11. Chemistry Matters—Molecular Mechanics
    12. Key Terms
    13. Summary
    14. Additional Problems
  6. 5 Stereochemistry at Tetrahedral Centers
    1. Why This Chapter?
    2. 5.1 Enantiomers and the Tetrahedral Carbon
    3. 5.2 The Reason for Handedness in Molecules: Chirality
    4. 5.3 Optical Activity
    5. 5.4 Pasteur’s Discovery of Enantiomers
    6. 5.5 Sequence Rules for Specifying Configuration
    7. 5.6 Diastereomers
    8. 5.7 Meso Compounds
    9. 5.8 Racemic Mixtures and the Resolution of Enantiomers
    10. 5.9 A Review of Isomerism
    11. 5.10 Chirality at Nitrogen, Phosphorus, and Sulfur
    12. 5.11 Prochirality
    13. 5.12 Chirality in Nature and Chiral Environments
    14. Chemistry Matters—Chiral Drugs
    15. Key Terms
    16. Summary
    17. Additional Problems
  7. 6 An Overview of Organic Reactions
    1. Why This Chapter?
    2. 6.1 Kinds of Organic Reactions
    3. 6.2 How Organic Reactions Occur: Mechanisms
    4. 6.3 Polar Reactions
    5. 6.4 An Example of a Polar Reaction: Addition of HBr to Ethylene
    6. 6.5 Using Curved Arrows in Polar Reaction Mechanisms
    7. 6.6 Radical Reactions
    8. 6.7 Describing a Reaction: Equilibria, Rates, and Energy Changes
    9. 6.8 Describing a Reaction: Bond Dissociation Energies
    10. 6.9 Describing a Reaction: Energy Diagrams and Transition States
    11. 6.10 Describing a Reaction: Intermediates
    12. 6.11 A Comparison Between Biological Reactions and Laboratory Reactions
    13. Chemistry Matters—Where Do Drugs Come From?
    14. Key Terms
    15. Summary
    16. Additional Problems
  8. 7 Alkenes: Structure and Reactivity
    1. Why This Chapter?
    2. 7.1 Industrial Preparation and Use of Alkenes
    3. 7.2 Calculating the Degree of Unsaturation
    4. 7.3 Naming Alkenes
    5. 7.4 Cis–Trans Isomerism in Alkenes
    6. 7.5 Alkene Stereochemistry and the E,Z Designation
    7. 7.6 Stability of Alkenes
    8. 7.7 Electrophilic Addition Reactions of Alkenes
    9. 7.8 Orientation of Electrophilic Additions: Markovnikov’s Rule
    10. 7.9 Carbocation Structure and Stability
    11. 7.10 The Hammond Postulate
    12. 7.11 Evidence for the Mechanism of Electrophilic Additions: Carbocation Rearrangements
    13. Chemistry Matters—Bioprospecting: Hunting for Natural Products
    14. Key Terms
    15. Summary
    16. Additional Problems
  9. 8 Alkenes: Reactions and Synthesis
    1. Why This Chapter?
    2. 8.1 Preparing Alkenes: A Preview of Elimination Reactions
    3. 8.2 Halogenation of Alkenes: Addition of X2
    4. 8.3 Halohydrins from Alkenes: Addition of HO-X
    5. 8.4 Hydration of Alkenes: Addition of H2O by Oxymercuration
    6. 8.5 Hydration of Alkenes: Addition of H2O by Hydroboration
    7. 8.6 Reduction of Alkenes: Hydrogenation
    8. 8.7 Oxidation of Alkenes: Epoxidation and Hydroxylation
    9. 8.8 Oxidation of Alkenes: Cleavage to Carbonyl Compounds
    10. 8.9 Addition of Carbenes to Alkenes: Cyclopropane Synthesis
    11. 8.10 Radical Additions to Alkenes: Chain-Growth Polymers
    12. 8.11 Biological Additions of Radicals to Alkenes
    13. 8.12 Reaction Stereochemistry: Addition of H2O to an Achiral Alkene
    14. 8.13 Reaction Stereochemistry: Addition of H2O to a Chiral Alkene
    15. Chemistry Matters—Terpenes: Naturally Occurring Alkenes
    16. Key Terms
    17. Summary
    18. Summary of Reactions
    19. Additional Problems
  10. 9 Alkynes: An Introduction to Organic Synthesis
    1. Why This Chapter?
    2. 9.1 Naming Alkynes
    3. 9.2 Preparation of Alkynes: Elimination Reactions of Dihalides
    4. 9.3 Reactions of Alkynes: Addition of HX and X2
    5. 9.4 Hydration of Alkynes
    6. 9.5 Reduction of Alkynes
    7. 9.6 Oxidative Cleavage of Alkynes
    8. 9.7 Alkyne Acidity: Formation of Acetylide Anions
    9. 9.8 Alkylation of Acetylide Anions
    10. 9.9 An Introduction to Organic Synthesis
    11. Chemistry Matters—The Art of Organic Synthesis
    12. Key Terms
    13. Summary
    14. Summary of Reactions
    15. Additional Problems
  11. 10 Organohalides
    1. Why This Chapter?
    2. 10.1 Names and Structures of Alkyl Halides
    3. 10.2 Preparing Alkyl Halides from Alkanes: Radical Halogenation
    4. 10.3 Preparing Alkyl Halides from Alkenes: Allylic Bromination
    5. 10.4 Stability of the Allyl Radical: Resonance Revisited
    6. 10.5 Preparing Alkyl Halides from Alcohols
    7. 10.6 Reactions of Alkyl Halides: Grignard Reagents
    8. 10.7 Organometallic Coupling Reactions
    9. 10.8 Oxidation and Reduction in Organic Chemistry
    10. Chemistry Matters—Naturally Occurring Organohalides
    11. Key Terms
    12. Summary
    13. Summary of Reactions
    14. Additional Problems
  12. 11 Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations
    1. Why This Chapter?
    2. 11.1 The Discovery of Nucleophilic Substitution Reactions
    3. 11.2 The SN2 Reaction
    4. 11.3 Characteristics of the SN2 Reaction
    5. 11.4 The SN1 Reaction
    6. 11.5 Characteristics of the SN1 Reaction
    7. 11.6 Biological Substitution Reactions
    8. 11.7 Elimination Reactions: Zaitsev’s Rule
    9. 11.8 The E2 Reaction and the Deuterium Isotope Effect
    10. 11.9 The E2 Reaction and Cyclohexane Conformation
    11. 11.10 The E1 and E1cB Reactions
    12. 11.11 Biological Elimination Reactions
    13. 11.12 A Summary of Reactivity: SN1, SN2, E1, E1cB, and E2
    14. Chemistry Matters—Green Chemistry
    15. Key Terms
    16. Summary
    17. Summary of Reactions
    18. Additional Problems
  13. 12 Structure Determination: Mass Spectrometry and Infrared Spectroscopy
    1. Why This Chapter?
    2. 12.1 Mass Spectrometry of Small Molecules: Magnetic-Sector Instruments
    3. 12.2 Interpreting Mass Spectra
    4. 12.3 Mass Spectrometry of Some Common Functional Groups
    5. 12.4 Mass Spectrometry in Biological Chemistry: Time-of-Flight (TOF) Instruments
    6. 12.5 Spectroscopy and the Electromagnetic Spectrum
    7. 12.6 Infrared Spectroscopy
    8. 12.7 Interpreting Infrared Spectra
    9. 12.8 Infrared Spectra of Some Common Functional Groups
    10. Chemistry Matters—X-Ray Crystallography
    11. Key Terms
    12. Summary
    13. Additional Problems
  14. 13 Structure Determination: Nuclear Magnetic Resonance Spectroscopy
    1. Why This Chapter?
    2. 13.1 Nuclear Magnetic Resonance Spectroscopy
    3. 13.2 The Nature of NMR Absorptions
    4. 13.3 Chemical Shifts
    5. 13.4 Chemical Shifts in 1H NMR Spectroscopy
    6. 13.5 Integration of 1H NMR Absorptions: Proton Counting
    7. 13.6 Spin–Spin Splitting in 1H NMR Spectra
    8. 13.7 1H NMR Spectroscopy and Proton Equivalence
    9. 13.8 More Complex Spin–Spin Splitting Patterns
    10. 13.9 Uses of 1H NMR Spectroscopy
    11. 13.10 13C NMR Spectroscopy: Signal Averaging and FT–NMR
    12. 13.11 Characteristics of 13C NMR Spectroscopy
    13. 13.12 DEPT 13C NMR Spectroscopy
    14. 13.13 Uses of 13C NMR Spectroscopy
    15. Chemistry Matters—Magnetic Resonance Imaging (MRI)
    16. Key Terms
    17. Summary
    18. Additional Problems
  15. 14 Conjugated Compounds and Ultraviolet Spectroscopy
    1. Why This Chapter?
    2. 14.1 Stability of Conjugated Dienes: Molecular Orbital Theory
    3. 14.2 Electrophilic Additions to Conjugated Dienes: Allylic Carbocations
    4. 14.3 Kinetic versus Thermodynamic Control of Reactions
    5. 14.4 The Diels–Alder Cycloaddition Reaction
    6. 14.5 Characteristics of the Diels–Alder Reaction
    7. 14.6 Diene Polymers: Natural and Synthetic Rubbers
    8. 14.7 Ultraviolet Spectroscopy
    9. 14.8 Interpreting Ultraviolet Spectra: The Effect of Conjugation
    10. 14.9 Conjugation, Color, and the Chemistry of Vision
    11. Chemistry Matters—Photolithography
    12. Key Terms
    13. Summary
    14. Summary of Reactions
    15. Additional Problems
  16. 15 Benzene and Aromaticity
    1. Why This Chapter?
    2. 15.1 Naming Aromatic Compounds
    3. 15.2 Structure and Stability of Benzene
    4. 15.3 Aromaticity and the Hückel 4n + 2 Rule
    5. 15.4 Aromatic Ions
    6. 15.5 Aromatic Heterocycles: Pyridine and Pyrrole
    7. 15.6 Polycyclic Aromatic Compounds
    8. 15.7 Spectroscopy of Aromatic Compounds
    9. Chemistry Matters—Aspirin, NSAIDs, and COX-2 Inhibitors
    10. Key Terms
    11. Summary
    12. Additional Problems
  17. 16 Chemistry of Benzene: Electrophilic Aromatic Substitution
    1. Why This Chapter?
    2. 16.1 Electrophilic Aromatic Substitution Reactions: Bromination
    3. 16.2 Other Aromatic Substitutions
    4. 16.3 Alkylation and Acylation of Aromatic Rings: The Friedel–Crafts Reaction
    5. 16.4 Substituent Effects in Electrophilic Substitutions
    6. 16.5 Trisubstituted Benzenes: Additivity of Effects
    7. 16.6 Nucleophilic Aromatic Substitution
    8. 16.7 Benzyne
    9. 16.8 Oxidation of Aromatic Compounds
    10. 16.9 Reduction of Aromatic Compounds
    11. 16.10 Synthesis of Polysubstituted Benzenes
    12. Chemistry Matters—Combinatorial Chemistry
    13. Key Terms
    14. Summary
    15. Summary of Reactions
    16. Additional Problems
  18. 17 Alcohols and Phenols
    1. Why This Chapter?
    2. 17.1 Naming Alcohols and Phenols
    3. 17.2 Properties of Alcohols and Phenols
    4. 17.3 Preparation of Alcohols: A Review
    5. 17.4 Alcohols from Carbonyl Compounds: Reduction
    6. 17.5 Alcohols from Carbonyl Compounds: Grignard Reaction
    7. 17.6 Reactions of Alcohols
    8. 17.7 Oxidation of Alcohols
    9. 17.8 Protection of Alcohols
    10. 17.9 Phenols and Their Uses
    11. 17.10 Reactions of Phenols
    12. 17.11 Spectroscopy of Alcohols and Phenols
    13. Chemistry Matters—Ethanol: Chemical, Drug, and Poison
    14. Key Terms
    15. Summary
    16. Summary of Reactions
    17. Additional Problems
  19. 18 Ethers and Epoxides; Thiols and Sulfides
    1. Why This Chapter?
    2. 18.1 Names and Properties of Ethers
    3. 18.2 Preparing Ethers
    4. 18.3 Reactions of Ethers: Acidic Cleavage
    5. 18.4 Cyclic Ethers: Epoxides
    6. 18.5 Reactions of Epoxides: Ring-Opening
    7. 18.6 Crown Ethers
    8. 18.7 Thiols and Sulfides
    9. 18.8 Spectroscopy of Ethers
    10. Chemistry Matters—Epoxy Resins and Adhesives
    11. Key Terms
    12. Summary
    13. Summary of Reactions
    14. Additional Problems
    15. Preview of Carbonyl Chemistry
  20. 19 Aldehydes and Ketones: Nucleophilic Addition Reactions
    1. Why This Chapter?
    2. 19.1 Naming Aldehydes and Ketones
    3. 19.2 Preparing Aldehydes and Ketones
    4. 19.3 Oxidation of Aldehydes and Ketones
    5. 19.4 Nucleophilic Addition Reactions of Aldehydes and Ketones
    6. 19.5 Nucleophilic Addition of H2O: Hydration
    7. 19.6 Nucleophilic Addition of HCN: Cyanohydrin Formation
    8. 19.7 Nucleophilic Addition of Hydride and Grignard Reagents: Alcohol Formation
    9. 19.8 Nucleophilic Addition of Amines: Imine and Enamine Formation
    10. 19.9 Nucleophilic Addition of Hydrazine: The Wolff–Kishner Reaction
    11. 19.10 Nucleophilic Addition of Alcohols: Acetal Formation
    12. 19.11 Nucleophilic Addition of Phosphorus Ylides: The Wittig Reaction
    13. 19.12 Biological Reductions
    14. 19.13 Conjugate Nucleophilic Addition to α,β‑Unsaturated Aldehydes and Ketones
    15. 19.14 Spectroscopy of Aldehydes and Ketones
    16. Chemistry Matters—Enantioselective Synthesis
    17. Key Terms
    18. Summary
    19. Summary of Reactions
    20. Additional Problems
  21. 20 Carboxylic Acids and Nitriles
    1. Why This Chapter?
    2. 20.1 Naming Carboxylic Acids and Nitriles
    3. 20.2 Structure and Properties of Carboxylic Acids
    4. 20.3 Biological Acids and the Henderson–Hasselbalch Equation
    5. 20.4 Substituent Effects on Acidity
    6. 20.5 Preparing Carboxylic Acids
    7. 20.6 Reactions of Carboxylic Acids: An Overview
    8. 20.7 Chemistry of Nitriles
    9. 20.8 Spectroscopy of Carboxylic Acids and Nitriles
    10. Chemistry Matters—Vitamin C
    11. Key Terms
    12. Summary
    13. Summary of Reactions
    14. Additional Problems
  22. 21 Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions
    1. Why This Chapter?
    2. 21.1 Naming Carboxylic Acid Derivatives
    3. 21.2 Nucleophilic Acyl Substitution Reactions
    4. 21.3 Reactions of Carboxylic Acids
    5. 21.4 Chemistry of Acid Halides
    6. 21.5 Chemistry of Acid Anhydrides
    7. 21.6 Chemistry of Esters
    8. 21.7 Chemistry of Amides
    9. 21.8 Chemistry of Thioesters and Acyl Phosphates: Biological Carboxylic Acid Derivatives
    10. 21.9 Polyamides and Polyesters: Step-Growth Polymers
    11. 21.10 Spectroscopy of Carboxylic Acid Derivatives
    12. Chemistry Matters—β-Lactam Antibiotics
    13. Key Terms
    14. Summary
    15. Summary of Reactions
    16. Additional Problems
  23. 22 Carbonyl Alpha-Substitution Reactions
    1. Why This Chapter?
    2. 22.1 Keto–Enol Tautomerism
    3. 22.2 Reactivity of Enols: α-Substitution Reactions
    4. 22.3 Alpha Halogenation of Aldehydes and Ketones
    5. 22.4 Alpha Bromination of Carboxylic Acids
    6. 22.5 Acidity of Alpha Hydrogen Atoms: Enolate Ion Formation
    7. 22.6 Reactivity of Enolate Ions
    8. 22.7 Alkylation of Enolate Ions
    9. Chemistry Matters—Barbiturates
    10. Key Terms
    11. Summary
    12. Summary of Reactions
    13. Additional Problems
  24. 23 Carbonyl Condensation Reactions
    1. Why This Chapter?
    2. 23.1 Carbonyl Condensations: The Aldol Reaction
    3. 23.2 Carbonyl Condensations versus Alpha Substitutions
    4. 23.3 Dehydration of Aldol Products: Synthesis of Enones
    5. 23.4 Using Aldol Reactions in Synthesis
    6. 23.5 Mixed Aldol Reactions
    7. 23.6 Intramolecular Aldol Reactions
    8. 23.7 The Claisen Condensation Reaction
    9. 23.8 Mixed Claisen Condensations
    10. 23.9 Intramolecular Claisen Condensations: The Dieckmann Cyclization
    11. 23.10 Conjugate Carbonyl Additions: The Michael Reaction
    12. 23.11 Carbonyl Condensations with Enamines: The Stork Enamine Reaction
    13. 23.12 The Robinson Annulation Reaction
    14. 23.13 Some Biological Carbonyl Condensation Reactions
    15. Chemistry Matters—A Prologue to Metabolism
    16. Key Terms
    17. Summary
    18. Summary of Reactions
    19. Additional Problems
  25. 24 Amines and Heterocycles
    1. Why This Chapter?
    2. 24.1 Naming Amines
    3. 24.2 Structure and Properties of Amines
    4. 24.3 Basicity of Amines
    5. 24.4 Basicity of Arylamines
    6. 24.5 Biological Amines and the Henderson–Hasselbalch Equation
    7. 24.6 Synthesis of Amines
    8. 24.7 Reactions of Amines
    9. 24.8 Reactions of Arylamines
    10. 24.9 Heterocyclic Amines
    11. 24.10 Spectroscopy of Amines
    12. Chemistry Matters—Green Chemistry II: Ionic Liquids
    13. Key Terms
    14. Summary
    15. Summary of Reactions
    16. Additional Problems
  26. 25 Biomolecules: Carbohydrates
    1. Why This Chapter?
    2. 25.1 Classification of Carbohydrates
    3. 25.2 Representing Carbohydrate Stereochemistry: Fischer Projections
    4. 25.3 D,L Sugars
    5. 25.4 Configurations of the Aldoses
    6. 25.5 Cyclic Structures of Monosaccharides: Anomers
    7. 25.6 Reactions of Monosaccharides
    8. 25.7 The Eight Essential Monosaccharides
    9. 25.8 Disaccharides
    10. 25.9 Polysaccharides and Their Synthesis
    11. 25.10 Some Other Important Carbohydrates
    12. Chemistry Matters—Sweetness
    13. Key Terms
    14. Summary
    15. Summary of Reactions
    16. Additional Problems
  27. 26 Biomolecules: Amino Acids, Peptides, and Proteins
    1. Why This Chapter?
    2. 26.1 Structures of Amino Acids
    3. 26.2 Amino Acids and the Henderson–Hasselbalch Equation: Isoelectric Points
    4. 26.3 Synthesis of Amino Acids
    5. 26.4 Peptides and Proteins
    6. 26.5 Amino Acid Analysis of Peptides
    7. 26.6 Peptide Sequencing: The Edman Degradation
    8. 26.7 Peptide Synthesis
    9. 26.8 Automated Peptide Synthesis: The Merrifield Solid-Phase Method
    10. 26.9 Protein Structure
    11. 26.10 Enzymes and Coenzymes
    12. 26.11 How Do Enzymes Work? Citrate Synthase
    13. Chemistry Matters—The Protein Data Bank
    14. Key Terms
    15. Summary
    16. Summary of Reactions
    17. Additional Problems
  28. 27 Biomolecules: Lipids
    1. Why This Chapter?
    2. 27.1 Waxes, Fats, and Oils
    3. 27.2 Soap
    4. 27.3 Phospholipids
    5. 27.4 Prostaglandins and Other Eicosanoids
    6. 27.5 Terpenoids
    7. 27.6 Steroids
    8. 27.7 Biosynthesis of Steroids
    9. Chemistry Matters—Saturated Fats, Cholesterol, and Heart Disease
    10. Key Terms
    11. Summary
    12. Additional Problems
  29. 28 Biomolecules: Nucleic Acids
    1. Why This Chapter?
    2. 28.1 Nucleotides and Nucleic Acids
    3. 28.2 Base Pairing in DNA
    4. 28.3 Replication of DNA
    5. 28.4 Transcription of DNA
    6. 28.5 Translation of RNA: Protein Biosynthesis
    7. 28.6 DNA Sequencing
    8. 28.7 DNA Synthesis
    9. 28.8 The Polymerase Chain Reaction
    10. Chemistry Matters—DNA Fingerprinting
    11. Key Terms
    12. Summary
    13. Additional Problems
  30. 29 The Organic Chemistry of Metabolic Pathways
    1. Why This Chapter?
    2. 29.1 An Overview of Metabolism and Biochemical Energy
    3. 29.2 Catabolism of Triacylglycerols: The Fate of Glycerol
    4. 29.3 Catabolism of Triacylglycerols: β-Oxidation
    5. 29.4 Biosynthesis of Fatty Acids
    6. 29.5 Catabolism of Carbohydrates: Glycolysis
    7. 29.6 Conversion of Pyruvate to Acetyl CoA
    8. 29.7 The Citric Acid Cycle
    9. 29.8 Carbohydrate Biosynthesis: Gluconeogenesis
    10. 29.9 Catabolism of Proteins: Deamination
    11. 29.10 Some Conclusions about Biological Chemistry
    12. Chemistry Matters—Statin Drugs
    13. Key Terms
    14. Summary
    15. Additional Problems
  31. 30 Orbitals and Organic Chemistry: Pericyclic Reactions
    1. Why This Chapter?
    2. 30.1 Molecular Orbitals of Conjugated Pi Systems
    3. 30.2 Electrocyclic Reactions
    4. 30.3 Stereochemistry of Thermal Electrocyclic Reactions
    5. 30.4 Photochemical Electrocyclic Reactions
    6. 30.5 Cycloaddition Reactions
    7. 30.6 Stereochemistry of Cycloadditions
    8. 30.7 Sigmatropic Rearrangements
    9. 30.8 Some Examples of Sigmatropic Rearrangements
    10. 30.9 A Summary of Rules for Pericyclic Reactions
    11. Chemistry Matters—Vitamin D, the Sunshine Vitamin
    12. Key Terms
    13. Summary
    14. Additional Problems
  32. 31 Synthetic Polymers
    1. Why This Chapter?
    2. 31.1 Chain-Growth Polymers
    3. 31.2 Stereochemistry of Polymerization: Ziegler–Natta Catalysts
    4. 31.3 Copolymers
    5. 31.4 Step-Growth Polymers
    6. 31.5 Olefin Metathesis Polymerization
    7. 31.6 Intramolecular Olefin Metathesis
    8. 31.7 Polymer Structure and Physical Properties
    9. Chemistry Matters—Degradable Polymers
    10. Key Terms
    11. Summary
    12. Additional Problems
  33. A | Nomenclature of Polyfunctional Organic Compounds
  34. B | Acidity Constants for Some Organic Compounds
  35. C | Glossary
  36. D | Periodic Table
  37. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
    11. Chapter 11
    12. Chapter 12
    13. Chapter 13
    14. Chapter 14
    15. Chapter 15
    16. Chapter 16
    17. Chapter 17
    18. Chapter 18
    19. Chapter 19
    20. Chapter 20
    21. Chapter 21
    22. Chapter 22
    23. Chapter 23
    24. Chapter 24
    25. Chapter 25
    26. Chapter 26
    27. Chapter 27
    28. Chapter 28
    29. Chapter 29
    30. Chapter 30
    31. Chapter 31
  38. Index

16.4 • Substituent Effects in Electrophilic Substitutions

Only one product can form when an electrophilic substitution occurs on benzene, but what would happen if we were to carry out a reaction on an aromatic ring that already has a substituent? The initial presence of a substituent on the ring has two effects.

  • Substituents affect the reactivity of the aromatic ring. Some substituents activate the ring, making it more reactive than benzene, and some deactivate the ring, making it less reactive than benzene. In aromatic nitration, for instance, an –OH substituent makes the ring 1000 times more reactive than benzene, while an –NO2 substituent makes the ring more than 10 million times less reactive.
    Nitrobenzene, chlorobenzene, benzene, and phenol are arranged in order of increasing reactivity. Their respective relative rate of nitration values are mentioned.
  • Substituents affect the orientation of the reaction. The three possible disubstituted products—ortho, meta, and para—are usually not formed in equal amounts. Instead, the nature of the substituent initially present on the benzene ring determines the position of the second substitution. An –OH group directs substitution toward the ortho and para positions, for instance, while a carbonyl group such as –CHO directs substitution primarily toward the meta position. Table 16.1 lists experimental results for the nitration of some substituted benzenes.
Table 16.1 Orientation of Nitration in Substituted Benzenes
Benzene bonded to Y reacts with nitric acid in the presence of sulfuric acid at 25 degrees Celsius to form substituted benzene.
  Product (%)
  Ortho Meta Para
Meta-directing deactivators
N+(CH3)3N+(CH3)3  2 87 11
–NO2  7 91  2
–CO2H 22 76  2
–CN 17 81  2
–CO2CH3 28 66  6
–COCH3 26 72  2
–CHO 19 72  9
Ortho- and para-directing deactivators
–F 13 1 86
–Cl 35 1 64
–Br 43 1 56
–I 45 1 54
Ortho- and para-directing activators
–CH3 63 3 34
–OH 50 0 50
–NHCOCH3 19 2 79

Substituents can be classified into three groups, as shown in Figure 16.12: ortho- and para-directing activators, ortho- and para-directing deactivators, and meta-directing deactivators. There are no meta-directing activators. Notice how the directing effect of a group correlates with its reactivity. All meta-directing groups are strongly deactivating, and most ortho- and para-directing groups are activating. The halogens are unique in being ortho- and para-directing but weakly deactivating.

Meta-directing deactivators, ortho and para-directing deactivators, and ortho-and-para directing activators are arranged in order of increasing reactivity.
Figure 16.12 Classification of substituent effects in electrophilic aromatic substitution. All activating groups are ortho- and para-directing, and all deactivating groups other than halogen are meta-directing. Halogens are unique in being deactivating but ortho- and para-directing.

Worked Example 16.2

Predicting the Product of an Electrophilic Aromatic Substitution Reaction

Predict the major product of the sulfonation of toluene.

Strategy

Identify the substituent present on the ring, and decide whether it is ortho- and para-directing or meta-directing. According to Figure 16.12, an alkyl substituent is ortho- and para-directing, so sulfonation of toluene will primarily give a mixture of o-toluenesulfonic acid and p-toluenesulfonic acid.

Solution

Toluene reacts with sulfur trioxide in the presence of sulfuric acid to form ortho-toluenesulfonic acid and para-toluenesulfonic acid.
Problem 16-8
Rank the compounds in each of the following groups in order of their reactivity to electrophilic substitution:
(a)
Nitrobenzene, phenol, toluene, benzene
(b)
Phenol, benzene, chlorobenzene, benzoic acid
(c)
Benzene, bromobenzene, benzaldehyde, aniline
Problem 16-9
Predict the major products of the following reactions:
(a)
Nitration of bromobenzene
(b)
 Bromination of nitrobenzene
(c)
Chlorination of phenol
(d)
Bromination of aniline

Activating and Deactivating Effects

What makes a group either activating or deactivating? The common characteristic of all activating groups is that they donate electrons to the ring, thereby making the ring more electron-rich, stabilizing the carbocation intermediate, and lowering the activation energy for its formation. Conversely, the common characteristic of all deactivating groups is that they withdraw electrons from the ring, thereby making the ring more electron-poor, destabilizing the carbocation intermediate, and raising the activation energy for its formation.

The difference in rate of reaction of benzene with a Y group withdrawing electrons, no Y group, and a Y group donating electrons is shown.

Compare the electrostatic potential maps of benzaldehyde (deactivated), chlorobenzene (weakly deactivated), and phenol (activated) with that of benzene. As shown in Figure 16.13, the ring is more positive (yellow-green) when an electron-withdrawing group such as –CHO or –Cl is present and more negative (red) when an electron-donating group such as –OH is present.

The ball-and-stick model in electrostatic potential maps and structures of benzaldehyde, chlorobenzene, benzene, and phenol.
Figure 16.13 Electrostatic potential maps of benzene and several substituted benzenes show that an electron-withdrawing group (–CHO or –Cl) makes the ring more electron-poor, while an electron-donating group (–OH) makes the ring more electron-rich.

The withdrawal or donation of electrons by a substituent group is controlled by an interplay of inductive effects and resonance effects. As we saw in Section 2.1, an inductive effect is the withdrawal or donation of electrons through a σ bond due to electronegativity. Halogens, hydroxyl groups, carbonyl groups, cyano groups, and nitro groups inductively withdraw electrons through the σ bond linking the substituent to a benzene ring. This effect is most pronounced in halobenzenes and phenols, in which the electronegative atom is directly attached to the ring, but is also significant in carbonyl compounds, nitriles, and nitro compounds, in which the electronegative atom is farther removed. Alkyl groups, on the other hand, inductively donate electrons. This is the same hyperconjugative donating effect that causes alkyl substituents to stabilize alkenes (Section 7.6) and carbocations (Section 7.9).

Five benzene rings with chlorine, hydroxyl group, carbonyl group, cyano group, and nitro group are labeled inductive electron withdrawal. Toluene is labeled inductive electron donation.

A resonance effect is the withdrawal or donation of electrons through a π bond due to the overlap of a p orbital on the substituent with a p orbital on the aromatic ring. Carbonyl, cyano, and nitro substituents, for example, withdraw electrons from the aromatic ring by resonance. The π electrons flow from the ring to the substituent, leaving a positive charge in the ring. Note that substituents with an electron-withdrawing resonance effect have the general structure –Y=Z, where the Z atom is more electronegative than Y.

Conversely, halogen, hydroxyl, alkoxyl (–OR), and amino substituents donate electrons to the aromatic ring by resonance. Lone-pair electrons flow from the substituents to the ring, placing a negative charge on the ring. Substituents with an electron-donating resonance effect have the general structure –Ÿ–Ÿ, where the Y atom has a lone pair of electrons available for donation to the ring.

Resonance structures of a benzene ring bonded to Y double bond Z are shown for the case of Y Z being an  electron withdrawing group and an electron donating group.

One further point: inductive effects and resonance effects don’t necessarily act in the same direction. Halogen, hydroxyl, alkoxyl, and amino substituents, for instance, have electron-withdrawing inductive effects because of the electronegativity of the –X, –O, or –N atom bonded to the aromatic ring but have electron-donating resonance effects because of the lone-pair electrons on those –X, –O, or –N atoms. When the two effects act in opposite directions, the stronger effect dominates. Thus, hydroxyl, alkoxyl, and amino substituents are activators because their stronger electron-donating resonance effect outweighs their weaker electron-withdrawing inductive effect. Halogens, however, are deactivators because their stronger electron-withdrawing inductive effect outweighs their weaker electron-donating resonance effect.

Problem 16-10

Use Figure 16.12 to explain why Friedel–Crafts alkylations often give polysubstitution but Friedel–Crafts acylations do not.

Benzene reacts with methyl chloride in the presence of aluminum trichloride to form mono and para disubstituted products. Benzene reacts with acetyl chloride in the presence of aluminum trichloride to form only one product.
Problem 16-11

An electrostatic potential map of (trifluoromethyl)benzene, C6H5CF3, is shown. Would you expect (trifluoromethyl)benzene to be more reactive or less reactive than toluene toward electrophilic substitution? Explain.

Electrostatic potential maps constituting the ball-and-stick models of (trifluoromethyl)benzene and toluene show redness around fluorine atoms and in the ring region, respectively.

Ortho- and Para-Directing Activators: Alkyl Groups

Inductive and resonance effects account not only for reactivity but also for the orientation of electrophilic aromatic substitutions. Take alkyl groups, for instance, which have an electron-donating inductive effect and are ortho and para directors. The results of toluene nitration are shown in Figure 16.14.

Toluene undergoes nitration reaction to form 63 percent ortho, 3 percent meta, and 34 percent para substituted intermediates. The resonance structures of intermediates are depicted.
Figure 16.14 Carbocation intermediates in the nitration of toluene. Ortho and para intermediates are more stable than the meta intermediate because the positive charge is on a tertiary carbon rather than a secondary carbon.

Nitration of toluene might occur either ortho, meta, or para to the methyl group, giving the three carbocation intermediates shown in in Figure 16.14. Although all three intermediates are resonance-stabilized, the ortho and para intermediates are more stabilized than the meta intermediate. For both the ortho and para reactions, but not for the meta reaction, a resonance form places the positive charge directly on the methyl-substituted carbon, where it is in a tertiary position and can be stabilized by the electron-donating inductive effect of the methyl group. The ortho and para intermediates are thus lower in energy than the meta intermediate and form faster.

Ortho- and Para-Directing Activators: OH and NH2

Hydroxyl, alkoxyl, and amino groups are also ortho–para activators, but for a different reason than for alkyl groups. As described earlier in this section, hydroxyl, alkoxyl, and amino groups have a strong, electron-donating resonance effect that outweighs a weaker electron-withdrawing inductive effect. When phenol is nitrated, for instance, reaction can occur either ortho, meta, or para to the –OH group, giving the carbocation intermediates shown in Figure 16.15. The ortho and para intermediates are more stable than the meta intermediate because they have more resonance forms, including one particularly favorable form that allows the positive charge to be stabilized by electron donation from the substituent oxygen atom. The intermediate from the meta reaction has no such stabilization.

Phenol undergoes nitration to form 50 percent ortho, no meta, and 50 percent para substituted intermediates. The resonance structures of intermediates are depicted.
Figure 16.15 Carbocation intermediates in the nitration of phenol. The ortho and para intermediates are more stable than the meta intermediate because they have more resonance forms, including one particularly favorable form that involves electron donation from the oxygen atom.
Problem 16-12

Acetanilide is less reactive than aniline toward electrophilic substitution. Explain.

Acetanilide has benzene ring bonded to an N H group. The nitrogen atom is bonded to the carbonyl group which, in turn, is bonded to a methyl group.

Ortho- and Para-Directing Deactivators: Halogens

Halogens are deactivating because their stronger electron-withdrawing inductive effect outweighs their weaker electron-donating resonance effect. Although weak, that electron-donating resonance effect is nevertheless felt only at the ortho and para positions and not at the meta position (Figure 16.16). Thus, a halogen substituent can stabilize the positive charge of the carbocation intermediates from ortho and para reaction in the same way that hydroxyl and amino substituents can. The meta intermediate, however, has no such stabilization and is therefore formed more slowly.

Chlorobenzene undergoes nitration to form 35 percent ortho, 1 percent meta, and 64 percent para substituted intermediates. The resonance structures of intermediates are depicted.
Figure 16.16 Carbocation intermediates in the nitration of chlorobenzene. The ortho and para intermediates are more stable than the meta intermediate because of electron donation of the halogen lone-pair electrons.

Note again that halogens, hydroxyl, alkoxyl, and amino groups all withdraw electrons inductively but donate electrons by resonance. Halogens have a stronger electron-withdrawing inductive effect but a weaker electron-donating resonance effect and are thus deactivators. Hydroxyl, alkoxyl, and amino groups have a weaker electron-withdrawing inductive effect but a stronger electron-donating resonance effect and are thus activators. All are ortho and para directors, however, because of the lone pair of electrons on the atom bonded to the aromatic ring.

Meta-Directing Deactivators

The influence of meta-directing substituents can be explained using the same kinds of arguments used for ortho and para directors. Look at the nitration of benzaldehyde, for instance (Figure 16.17). Of the three possible carbocation intermediates, the meta intermediate has three favorable resonance forms, whereas the ortho and para intermediates have only two. In both ortho and para intermediates, the third resonance form is unfavorable because it places the positive charge directly on the carbon that bears the aldehyde group, where it is disfavored by a repulsive interaction with the positively polarized carbon atom of the C=O group. Hence, the meta intermediate is more favored and is formed faster than the ortho and para intermediates.

Benzaldehyde undergoes nitration to form 1 percent ortho, 72 percent meta, and 9 percent para substituted intermediates. The resonance structures of intermediates are depicted.
Figure 16.17 Carbocation intermediates in the nitration of benzaldehyde. The ortho and para intermediates are less stable than the meta intermediate. The meta intermediate is more favorable than ortho and para intermediates because it has three favorable resonance forms rather than two.

In general, any substituent that has a positively polarized atom (δ+) directly attached to the ring will make one of the resonance forms of the ortho and para intermediates unfavorable and will thus act as a meta director.

Problem 16-13
Draw resonance structures for the intermediates from the reaction of an electrophile at the ortho, meta, and para positions of nitrobenzene. Which intermediates are most stable?

A Summary of Substituent Effects in Electrophilic Aromatic Substitution

A summary of the activating and directing effects of substituents in electrophilic aromatic substitution is shown in Table 16.2.

Table 16.2 Substituent Effects in Electrophilic Aromatic Substitution
Substituent Reactivity Orienting effect Inductive effect Resonance effect
–CH3 Activating Ortho, para Weak donating
–OH, –NH2 Activating Ortho, para Weak withdrawing Strong donating
–F, –Cl Deactivating Ortho, para Strong withdrawing Weak donating
–Br, –I
–NO2, –CN, Deactivating Meta Strong withdrawing Strong withdrawing
–CHO, –CO2R
–COR, –CO2H
Citation/Attribution

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution-NonCommercial-ShareAlike License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/organic-chemistry/pages/1-why-this-chapter
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/organic-chemistry/pages/1-why-this-chapter
Citation information

© Sep 25, 2023 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.