Omitir e ir al contenidoIr a la página de accesibilidadMenú de atajos de teclado
Logo de OpenStax

Menú
Índice
  1. Prefacio
  2. 1 Muestreo y datos
    1. Introducción
    2. 1.1 Definiciones de estadística, probabilidad y términos clave
    3. 1.2 Datos, muestreo y variación de datos y muestreo
    4. 1.3 Frecuencia, tablas de frecuencia y niveles de medición
    5. 1.4 Diseño experimental y ética
    6. 1.5 Experimento de recopilación de datos
    7. 1.6 Experimento de muestreo
    8. Términos clave
    9. Repaso del capítulo
    10. Práctica
    11. Tarea para la casa
    12. Resúmalo todo: tarea para la casa
    13. Referencias
    14. Soluciones
  3. 2 Estadística descriptiva
    1. Introducción
    2. 2.1 Gráficos de tallo y hoja (gráfico de tallo), gráficos de líneas y gráficos de barras
    3. 2.2 Histogramas, polígonos de frecuencia y gráficos de series temporales
    4. 2.3 Medidas de la ubicación de los datos
    5. 2.4 Diagramas de caja
    6. 2.5 Medidas del centro de los datos
    7. 2.6 Distorsión y media, mediana y moda
    8. 2.7 Medidas de la dispersión de los datos
    9. 2.8 Estadística descriptiva
    10. Términos clave
    11. Repaso del capítulo
    12. Repaso de fórmulas
    13. Práctica
    14. Tarea para la casa
    15. Resúmalo todo: tarea para la casa
    16. Referencias
    17. Soluciones
  4. 3 Temas de probabilidad
    1. Introducción
    2. 3.1 Terminología
    3. 3.2 Eventos mutuamente excluyentes e independientes
    4. 3.3 Dos reglas básicas de la probabilidad
    5. 3.4 Tablas de contingencia
    6. 3.5 Diagramas de árbol y de Venn
    7. 3.6 Temas de probabilidad
    8. Términos clave
    9. Repaso del capítulo
    10. Repaso de fórmulas
    11. Práctica
    12. Uniéndolo todo: Práctica
    13. Tarea para la casa
    14. Resúmalo todo: tarea para la casa
    15. Referencias
    16. Soluciones
  5. 4 Variables aleatorias discretas
    1. Introducción
    2. 4.1 Función de Distribución de Probabilidad (PDF) para una variable aleatoria discreta
    3. 4.2 Media o valor esperado y desviación típica
    4. 4.3 Distribución binomial
    5. 4.4 Distribución geométrica
    6. 4.5 Distribución hipergeométrica
    7. 4.6 Distribución de Poisson
    8. 4.7 Distribución discreta (experimento con cartas)
    9. 4.8 Distribución discreta (experimento de los dados de la suerte)
    10. Términos clave
    11. Repaso del capítulo
    12. Repaso de fórmulas
    13. Práctica
    14. Tarea para la casa
    15. Referencias
    16. Soluciones
  6. 5 Variables aleatorias continuas
    1. Introducción
    2. 5.1 Funciones de probabilidad continuas
    3. 5.2 La distribución uniforme
    4. 5.3 La distribución exponencial
    5. 5.4 Distribución continua
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  7. 6 La distribución normal
    1. Introducción
    2. 6.1 La distribución normal estándar
    3. 6.2 Uso de la distribución normal
    4. 6.3 Distribución normal (tiempos de vuelta)
    5. 6.4 Distribución normal (longitud del meñique)
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  8. 7 El teorema del límite central
    1. Introducción
    2. 7.1 Teorema del límite central de medias muestrales (promedios)
    3. 7.2 El teorema del límite central para las sumas
    4. 7.3 Uso del teorema del límite central
    5. 7.4 Teorema del límite central (monedas en el bolsillo)
    6. 7.5 Teorema del límite central (recetas de galletas)
    7. Términos clave
    8. Repaso del capítulo
    9. Repaso de fórmulas
    10. Práctica
    11. Tarea para la casa
    12. Referencias
    13. Soluciones
  9. 8 Intervalos de confianza
    1. Introducción
    2. 8.1 La media de una población utilizando la distribución normal
    3. 8.2 La media de una población utilizando la distribución t de Student
    4. 8.3 Una proporción de la población
    5. 8.4 Intervalo de confianza (costos de hogares)
    6. 8.5 Intervalo de confianza (lugar de nacimiento)
    7. 8.6 Intervalo de confianza (altura de las mujeres)
    8. Términos clave
    9. Repaso del capítulo
    10. Repaso de fórmulas
    11. Práctica
    12. Tarea para la casa
    13. Referencias
    14. Soluciones
  10. 9 Pruebas de hipótesis con una muestra
    1. Introducción
    2. 9.1 Hipótesis nula y alternativa
    3. 9.2 Resultados y errores de tipo I y II
    4. 9.3 Distribución necesaria para la comprobación de la hipótesis
    5. 9.4 Eventos poco comunes, la muestra, decisión y conclusión
    6. 9.5 Información adicional y ejemplos de pruebas de hipótesis completas
    7. 9.6 Pruebas de hipótesis de una sola media y una sola proporción
    8. Términos clave
    9. Repaso del capítulo
    10. Repaso de fórmulas
    11. Práctica
    12. Tarea para la casa
    13. Referencias
    14. Soluciones
  11. 10 Pruebas de hipótesis con dos muestras
    1. Introducción
    2. 10.1 Medias de dos poblaciones con desviaciones típicas desconocidas
    3. 10.2 Dos medias poblacionales con desviaciones típicas conocidas
    4. 10.3 Comparación de dos proporciones de población independientes
    5. 10.4 Muestras coincidentes o emparejadas
    6. 10.5 Prueba de hipótesis para dos medias y dos proporciones
    7. Términos clave
    8. Repaso del capítulo
    9. Repaso de fórmulas
    10. Práctica
    11. Tarea para la casa
    12. Resúmalo todo: tarea para la casa
    13. Referencias
    14. Soluciones
  12. 11 La distribución chi-cuadrado
    1. Introducción
    2. 11.1 Datos sobre la distribución chi-cuadrado
    3. 11.2 Prueba de bondad de ajuste
    4. 11.3 Prueba de independencia
    5. 11.4 Prueba de homogeneidad
    6. 11.5 Comparación de las pruebas chi-cuadrado
    7. 11.6 Prueba de una sola varianza
    8. 11.7 Laboratorio 1: Bondad de ajuste de chi-cuadrado
    9. 11.8 Laboratorio 2: prueba de independencia de chi-cuadrado
    10. Términos clave
    11. Repaso del capítulo
    12. Repaso de fórmulas
    13. Práctica
    14. Tarea para la casa
    15. Resúmalo todo: tarea para la casa
    16. Referencias
    17. Soluciones
  13. 12 Regresión lineal y correlación
    1. Introducción
    2. 12.1 Ecuaciones lineales
    3. 12.2 Diagramas de dispersión
    4. 12.3 La ecuación de regresión
    5. 12.4 Comprobación de la importancia del coeficiente de correlación
    6. 12.5 Predicción
    7. 12.6 Valores atípicos
    8. 12.7 Regresión (distancia desde la escuela)
    9. 12.8 Regresión (costo de los libros de texto)
    10. 12.9 Regresión (eficiencia del combustible)
    11. Términos clave
    12. Repaso del capítulo
    13. Repaso de fórmulas
    14. Práctica
    15. Tarea para la casa
    16. Resúmalo todo: tarea para la casa
    17. Referencias
    18. Soluciones
  14. 13 Distribución F y análisis de varianza anova de una vía
    1. Introducción
    2. 13.1 ANOVA de una vía
    3. 13.2 La distribución F y el cociente F
    4. 13.3 Datos sobre la distribución F
    5. 13.4 Prueba de dos varianzas
    6. 13.5 Laboratorio: ANOVA de una vía
    7. Términos clave
    8. Repaso del capítulo
    9. Repaso de fórmulas
    10. Práctica
    11. Tarea para la casa
    12. Referencias
    13. Soluciones
  15. A Ejercicios de repaso (caps. 3-13)
  16. B Pruebas prácticas (de la 1 a la 4) y exámenes finales
  17. C Conjuntos de datos
  18. D Proyectos de grupos y asociaciones
  19. E Hojas de soluciones
  20. F Oraciones, símbolos y fórmulas matemáticas
  21. G Notas para las calculadoras TI-83, 83+, 84 y 84+
  22. H Tablas
  23. Índice

9.1 Hipótesis nula y alternativa

En una prueba de hipótesis se evalúan los datos de la muestra para llegar a una decisión sobre algún tipo de afirmación. Si se cumplen determinadas condiciones sobre la muestra, la afirmación se puede evaluar para una población. En una prueba de hipótesis, nosotros:

  1. Evalúe la hipótesis nula, normalmente denotada con H0. La nulidad no se rechaza, a menos que la prueba de hipótesis demuestre lo contrario. La declaración nula debe contener siempre alguna forma de igualdad (=, ≤ o ≥)
  2. Escriba siempre la hipótesis alternativa, generalmente denotada con Ha o H1, utilizando los símbolos de diferente, mayor que, o menor que (es decir, ≠, >, o <).
  3. Si rechazamos la hipótesis nula, podemos suponer que hay suficientes pruebas para apoyar la hipótesis alternativa.
  4. No diga nunca que una afirmación está probada como verdadera o falsa. Tenga en cuenta el hecho subyacente de que las pruebas de hipótesis se basan en leyes de probabilidad; por lo tanto, solo podemos hablar en términos de certezas no absolutas.

9.2 Resultados y errores de tipo I y II

En toda prueba de hipótesis, los resultados dependen de una interpretación correcta de los datos. Los cálculos incorrectos o el resumen de estadísticas mal entendidos pueden producir errores que afecten los resultados. Un error tipo I se produce cuando se rechaza una hipótesis nula verdadera. Un error tipo II se produce cuando no se rechaza una hipótesis nula falsa.

Las probabilidades de estos errores se indican con las letras griegas α y β, para un error tipo I y el tipo II, respectivamente. La potencia de la prueba, 1 – β, cuantifica la probabilidad de que una prueba arroje el resultado correcto de que se acepte una hipótesis alternativa verdadera. Es deseable una alta potencia.

9.3 Distribución necesaria para la comprobación de la hipótesis

Para que los resultados de una prueba de hipótesis se puedan generalizar a una población se deben cumplir ciertos requisitos.

Cuando se hacen pruebas para una única media poblacional:

  1. Se debe utilizar una prueba t de Student si los datos proceden de una muestra aleatoria simple y la población se distribuye aproximadamente normal, o el tamaño de la muestra es grande, con una desviación típica desconocida.
  2. La prueba normal funcionará si los datos proceden de una muestra simple y aleatoria y la población se distribuye aproximadamente de forma normal, o el tamaño de la muestra es grande, con una desviación típica conocida.

Al comprobar una proporción poblacional única, utilice una prueba normal para una proporción poblacional única si los datos proceden de una muestra aleatoria simple, cumplen los requisitos de una distribución binomial y el número de la media de aciertos y el número de la media de fallos satisfacen las condiciones: np > 5 y nq > 5, donde n es el tamaño de la muestra, p es la probabilidad de un acierto y q es la probabilidad de un fallo.

9.4 Eventos poco comunes, la muestra, decisión y conclusión

Cuando la probabilidad de que ocurra un evento es baja, y ocurre, se denomina evento poco común. Es importante tener en cuenta los eventos pocos comunes en las pruebas de hipótesis porque pueden informar de su voluntad de no rechazar o rechazar una hipótesis nula. Para probar una hipótesis nula, calcule el valor p para los datos de la muestra y grafique los resultados. A la hora de decidir si se rechaza o no la hipótesis nula, hay que tener en cuenta estos dos parámetros:

  1. α > valor p, rechaza la hipótesis nula
  2. α ≤ valor p, no rechaza la hipótesis nula

9.5 Información adicional y ejemplos de pruebas de hipótesis completas

La prueba de hipótesis en sí tiene un proceso establecido. Esto se sintetiza de la siguiente manera

  1. Determine H0 y Ha. Recuerde que son contradictorios.
  2. Determine la variable aleatoria.
  3. Determine la distribución para la prueba.
  4. Dibuje un gráfico, calcule el estadístico de la prueba y utilícelo para calcular el valor p. (La puntuación z y la puntuación t son ejemplos de estadísticos de prueba).
  5. Compare el α prestablecido con el valor p, tome una decisión (rechazar o no rechazar H0) y escriba una conclusión clara con frases en inglés.

Observe que al realizar la prueba de hipótesis, se utiliza α y no β. β es necesaria para determinar el tamaño de la muestra de los datos que se utiliza en el cálculo del valor p. Recuerde que la cantidad 1 - β recibe el nombre de potencia de la prueba. Es deseable una alta potencia. Si la potencia es demasiado baja, los estadísticos suelen aumentar el tamaño de la muestra al mantener igual el α. Si la potencia es baja, es posible que no se rechace la hipótesis nula cuando debería hacerlo.

Solicitar una copia impresa

As an Amazon Associate we earn from qualifying purchases.

Cita/Atribución

¿Desea citar, compartir o modificar este libro? Este libro utiliza la Creative Commons Attribution License y debe atribuir a OpenStax.

Información de atribución
  • Si redistribuye todo o parte de este libro en formato impreso, debe incluir en cada página física la siguiente atribución:
    Acceso gratis en https://openstax.org/books/introducci%C3%B3n-estad%C3%ADstica/pages/1-introduccion
  • Si redistribuye todo o parte de este libro en formato digital, debe incluir en cada vista de la página digital la siguiente atribución:
    Acceso gratuito en https://openstax.org/books/introducci%C3%B3n-estad%C3%ADstica/pages/1-introduccion
Información sobre citas

© 28 ene. 2022 OpenStax. El contenido de los libros de texto que produce OpenStax tiene una licencia de Creative Commons Attribution License . El nombre de OpenStax, el logotipo de OpenStax, las portadas de libros de OpenStax, el nombre de OpenStax CNX y el logotipo de OpenStax CNX no están sujetos a la licencia de Creative Commons y no se pueden reproducir sin el previo y expreso consentimiento por escrito de Rice University.