Omitir e ir al contenidoIr a la página de accesibilidadMenú de atajos de teclado
Logo de OpenStax

Índice
  1. Prefacio
  2. 1 Muestreo y datos
    1. Introducción
    2. 1.1 Definiciones de estadística, probabilidad y términos clave
    3. 1.2 Datos, muestreo y variación de datos y muestreo
    4. 1.3 Frecuencia, tablas de frecuencia y niveles de medición
    5. 1.4 Diseño experimental y ética
    6. 1.5 Experimento de recopilación de datos
    7. 1.6 Experimento de muestreo
    8. Términos clave
    9. Repaso del capítulo
    10. Práctica
    11. Tarea para la casa
    12. Resúmalo todo: tarea para la casa
    13. Referencias
    14. Soluciones
  3. 2 Estadística descriptiva
    1. Introducción
    2. 2.1 Gráficos de tallo y hoja (gráfico de tallo), gráficos de líneas y gráficos de barras
    3. 2.2 Histogramas, polígonos de frecuencia y gráficos de series temporales
    4. 2.3 Medidas de la ubicación de los datos
    5. 2.4 Diagramas de caja
    6. 2.5 Medidas del centro de los datos
    7. 2.6 Distorsión y media, mediana y moda
    8. 2.7 Medidas de la dispersión de los datos
    9. 2.8 Estadística descriptiva
    10. Términos clave
    11. Repaso del capítulo
    12. Repaso de fórmulas
    13. Práctica
    14. Tarea para la casa
    15. Resúmalo todo: tarea para la casa
    16. Referencias
    17. Soluciones
  4. 3 Temas de probabilidad
    1. Introducción
    2. 3.1 Terminología
    3. 3.2 Eventos mutuamente excluyentes e independientes
    4. 3.3 Dos reglas básicas de la probabilidad
    5. 3.4 Tablas de contingencia
    6. 3.5 Diagramas de árbol y de Venn
    7. 3.6 Temas de probabilidad
    8. Términos clave
    9. Repaso del capítulo
    10. Repaso de fórmulas
    11. Práctica
    12. Uniéndolo todo: Práctica
    13. Tarea para la casa
    14. Resúmalo todo: tarea para la casa
    15. Referencias
    16. Soluciones
  5. 4 Variables aleatorias discretas
    1. Introducción
    2. 4.1 Función de Distribución de Probabilidad (PDF) para una variable aleatoria discreta
    3. 4.2 Media o valor esperado y desviación típica
    4. 4.3 Distribución binomial
    5. 4.4 Distribución geométrica
    6. 4.5 Distribución hipergeométrica
    7. 4.6 Distribución de Poisson
    8. 4.7 Distribución discreta (experimento con cartas)
    9. 4.8 Distribución discreta (experimento de los dados de la suerte)
    10. Términos clave
    11. Repaso del capítulo
    12. Repaso de fórmulas
    13. Práctica
    14. Tarea para la casa
    15. Referencias
    16. Soluciones
  6. 5 Variables aleatorias continuas
    1. Introducción
    2. 5.1 Funciones de probabilidad continuas
    3. 5.2 La distribución uniforme
    4. 5.3 La distribución exponencial
    5. 5.4 Distribución continua
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  7. 6 La distribución normal
    1. Introducción
    2. 6.1 La distribución normal estándar
    3. 6.2 Uso de la distribución normal
    4. 6.3 Distribución normal (tiempos de vuelta)
    5. 6.4 Distribución normal (longitud del meñique)
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  8. 7 El teorema del límite central
    1. Introducción
    2. 7.1 Teorema del límite central de medias muestrales (promedios)
    3. 7.2 El teorema del límite central para las sumas
    4. 7.3 Uso del teorema del límite central
    5. 7.4 Teorema del límite central (monedas en el bolsillo)
    6. 7.5 Teorema del límite central (recetas de galletas)
    7. Términos clave
    8. Repaso del capítulo
    9. Repaso de fórmulas
    10. Práctica
    11. Tarea para la casa
    12. Referencias
    13. Soluciones
  9. 8 Intervalos de confianza
    1. Introducción
    2. 8.1 La media de una población utilizando la distribución normal
    3. 8.2 La media de una población utilizando la distribución t de Student
    4. 8.3 Una proporción de la población
    5. 8.4 Intervalo de confianza (costos de hogares)
    6. 8.5 Intervalo de confianza (lugar de nacimiento)
    7. 8.6 Intervalo de confianza (altura de las mujeres)
    8. Términos clave
    9. Repaso del capítulo
    10. Repaso de fórmulas
    11. Práctica
    12. Tarea para la casa
    13. Referencias
    14. Soluciones
  10. 9 Pruebas de hipótesis con una muestra
    1. Introducción
    2. 9.1 Hipótesis nula y alternativa
    3. 9.2 Resultados y errores de tipo I y II
    4. 9.3 Distribución necesaria para la comprobación de la hipótesis
    5. 9.4 Eventos poco comunes, la muestra, decisión y conclusión
    6. 9.5 Información adicional y ejemplos de pruebas de hipótesis completas
    7. 9.6 Pruebas de hipótesis de una sola media y una sola proporción
    8. Términos clave
    9. Repaso del capítulo
    10. Repaso de fórmulas
    11. Práctica
    12. Tarea para la casa
    13. Referencias
    14. Soluciones
  11. 10 Pruebas de hipótesis con dos muestras
    1. Introducción
    2. 10.1 Medias de dos poblaciones con desviaciones típicas desconocidas
    3. 10.2 Dos medias poblacionales con desviaciones típicas conocidas
    4. 10.3 Comparación de dos proporciones de población independientes
    5. 10.4 Muestras coincidentes o emparejadas
    6. 10.5 Prueba de hipótesis para dos medias y dos proporciones
    7. Términos clave
    8. Repaso del capítulo
    9. Repaso de fórmulas
    10. Práctica
    11. Tarea para la casa
    12. Resúmalo todo: tarea para la casa
    13. Referencias
    14. Soluciones
  12. 11 La distribución chi-cuadrado
    1. Introducción
    2. 11.1 Datos sobre la distribución chi-cuadrado
    3. 11.2 Prueba de bondad de ajuste
    4. 11.3 Prueba de independencia
    5. 11.4 Prueba de homogeneidad
    6. 11.5 Comparación de las pruebas chi-cuadrado
    7. 11.6 Prueba de una sola varianza
    8. 11.7 Laboratorio 1: Bondad de ajuste de chi-cuadrado
    9. 11.8 Laboratorio 2: prueba de independencia de chi-cuadrado
    10. Términos clave
    11. Repaso del capítulo
    12. Repaso de fórmulas
    13. Práctica
    14. Tarea para la casa
    15. Resúmalo todo: tarea para la casa
    16. Referencias
    17. Soluciones
  13. 12 Regresión lineal y correlación
    1. Introducción
    2. 12.1 Ecuaciones lineales
    3. 12.2 Diagramas de dispersión
    4. 12.3 La ecuación de regresión
    5. 12.4 Comprobación de la importancia del coeficiente de correlación
    6. 12.5 Predicción
    7. 12.6 Valores atípicos
    8. 12.7 Regresión (distancia desde la escuela)
    9. 12.8 Regresión (costo de los libros de texto)
    10. 12.9 Regresión (eficiencia del combustible)
    11. Términos clave
    12. Repaso del capítulo
    13. Repaso de fórmulas
    14. Práctica
    15. Tarea para la casa
    16. Resúmalo todo: tarea para la casa
    17. Referencias
    18. Soluciones
  14. 13 Distribución F y análisis de varianza anova de una vía
    1. Introducción
    2. 13.1 ANOVA de una vía
    3. 13.2 La distribución F y el cociente F
    4. 13.3 Datos sobre la distribución F
    5. 13.4 Prueba de dos varianzas
    6. 13.5 Laboratorio: ANOVA de una vía
    7. Términos clave
    8. Repaso del capítulo
    9. Repaso de fórmulas
    10. Práctica
    11. Tarea para la casa
    12. Referencias
    13. Soluciones
  15. A Ejercicios de repaso (caps. 3-13)
  16. B Pruebas prácticas (de la 1 a la 4) y exámenes finales
  17. C Conjuntos de datos
  18. D Proyectos de grupos y asociaciones
  19. E Hojas de soluciones
  20. F Oraciones, símbolos y fórmulas matemáticas
  21. G Notas para las calculadoras TI-83, 83+, 84 y 84+
  22. H Tablas
  23. Índice
Desviación típica
un número que es igual a la raíz cuadrada de la varianza y que mide lo lejos que están los valores de los datos de su media; notación: s para la desviación típica de la muestra y σ para la desviación típica de la población.
Distribución binomial
una variable aleatoria (RV) discreta que surge de ensayos de Bernoulli. Hay un número fijo, n, de ensayos independientes. “Independiente” significa que el resultado de cualquier ensayo (por ejemplo, el ensayo 1) no afecta los resultados de los ensayos siguientes, y que todos los ensayos se llevan a cabo en las mismas condiciones. En estas circunstancias, la RV binomial Χ se define como el número de aciertos en n ensayos. La notación es: X ~ B(n, p) μ = np y la desviación típica es σ=  npq σ=  npq . La probabilidad de obtener exactamente x aciertos en n ensayos es P(X=x)=( n x ) p x q nx P(X=x)=( n x ) p x q nx .
Distribución normal
una variable aleatoria (RV) continua con pdf e(x)=  1 σ 2π e (xμ) 2 2 σ 2 e(x)=  1 σ 2π e (xμ) 2 2 σ 2 , donde μ es la media de la distribución y σ es la desviación típica, notación: X ~ N(μ, σ). Si μ = 0 y σ = 1, la RV se denomina distribución normal estándar.
Distribución t de Student
investigado y presentado por William S. Gossett en 1908 y publicado bajo el seudónimo de Student. Las principales características de la variable aleatoria (RV) son
  • Es continuo y asume cualquier valor real.
  • La pdf es simétrica respecto a su media de cero. Sin embargo, tiene más dispersión y es más plana en el vértice que la distribución normal.
  • Se aproxima a la distribución normal estándar a medida que n es mayor.
  • Existe una "familia" de distribuciones t: cada representante de la familia está completamente definido por el número de grados de libertad que es uno menos que el número de elementos de datos.
Error de tipo 1
la decisión es rechazar la hipótesis nula cuando, de hecho, es verdadera.
Error de tipo 2
la decisión es no rechazar la hipótesis nula cuando, de hecho, es falsa.
Hipótesis
una afirmación sobre el valor de un parámetro de la población, en caso de dos hipótesis, la afirmación que se supone verdadera se llama hipótesis nula (notación H0) y la afirmación contradictoria se llama hipótesis alternativa (notación Ha).
Intervalo de confianza (IC)
una estimación de intervalo para un parámetro poblacional desconocido. Esto depende de
  • El nivel de confianza deseado.
  • Información que se conoce sobre la distribución (por ejemplo, desviación típica conocida).
  • La muestra y su tamaño.
Nivel de significación de la prueba
probabilidad de un error tipo I (rechazar la hipótesis nula cuando es verdadera). Notación: α. En las pruebas de hipótesis, el nivel de significación se denomina α preconcebido o α preestablecido.
Prueba de hipótesis
a partir de las pruebas de la muestra, un procedimiento para determinar si la hipótesis planteada es una afirmación razonable y no se debe rechazar, o es irrazonable y se debe rechazar.
Teorema del límite central
Dada una variable aleatoria (RV) con media conocida μμ y la desviación típica conocida σ. Estamos muestreando con un tamaño n y nos interesan dos nuevas RV: la media muestral, X ¯ X ¯ , y la suma de la muestra, ΣXΣX. Si el tamaño n de la muestra es suficientemente grande, entonces X ¯ ~N( μ, σ n ) X ¯ ~N( μ, σ n ) y ΣX~N(nμ, n σ) ΣX~N(nμ, n σ) . Si el tamaño n de la muestra es suficientemente grande, la distribución de las medias muestrales y la distribución de las sumas muestrales se aproximarán a una distribución normal, independientemente de la forma de la población. La media de las medias muestrales será igual a la media de la población, y la media de las sumas muestrales será igual a n veces la media de la población. La desviación típica de la distribución de las medias muestrales, σ n σ n , se denomina error estándar de la media.
valor p
la probabilidad de que un evento ocurra por pura casualidad, suponiendo que la hipótesis nula sea cierta. Cuanto menor sea el valor p, más fuerte es la evidencia contra la hipótesis nula.
Solicitar una copia impresa

As an Amazon Associate we earn from qualifying purchases.

Cita/Atribución

¿Desea citar, compartir o modificar este libro? Este libro utiliza la Creative Commons Attribution License y debe atribuir a OpenStax.

Información de atribución
  • Si redistribuye todo o parte de este libro en formato impreso, debe incluir en cada página física la siguiente atribución:
    Acceso gratis en https://openstax.org/books/introducci%C3%B3n-estad%C3%ADstica/pages/1-introduccion
  • Si redistribuye todo o parte de este libro en formato digital, debe incluir en cada vista de la página digital la siguiente atribución:
    Acceso gratuito en https://openstax.org/books/introducci%C3%B3n-estad%C3%ADstica/pages/1-introduccion
Información sobre citas

© 28 ene. 2022 OpenStax. El contenido de los libros de texto que produce OpenStax tiene una licencia de Creative Commons Attribution License . El nombre de OpenStax, el logotipo de OpenStax, las portadas de libros de OpenStax, el nombre de OpenStax CNX y el logotipo de OpenStax CNX no están sujetos a la licencia de Creative Commons y no se pueden reproducir sin el previo y expreso consentimiento por escrito de Rice University.