Problemas
4.1 Vectores de desplazamiento y velocidad
Las coordenadas de una partícula en un sistema de coordenadas rectangulares son (1,0, -4,0, 6,0). ¿Cuál es el vector de posición de la partícula?
La posición de una partícula cambia de a ¿Cuál es el desplazamiento de la partícula?
El hoyo 18 del campo de golf de Pebble Beach es un dogleg a la izquierda de 496,0 m de longitud. La calle desde el tee se toma como la dirección de la x. Un golfista realiza su golpe del tee a una distancia de 300,0 m, lo que corresponde a un desplazamiento y realiza su segundo golpe a 189,0 m con un desplazamiento ¿Cuál es el desplazamiento final de la bola de golf desde el tee?
Un pájaro vuela en línea recta hacia el noreste una distancia de 95,0 km durante 3,0 h. Con el eje de la x hacia el este y el eje de la y hacia el norte, ¿cuál es el desplazamiento en notación vectorial unitaria del pájaro? ¿Cuál es la velocidad media del viaje?
Un ciclista recorre 5,0 km hacia el este y luego 10,0 km a al oeste del norte. Desde este punto recorre 8,0 km hacia el oeste. ¿Cuál es el desplazamiento final desde el punto de partida del ciclista?
El defensa de los New York Rangers, Daniel Girardi, se sitúa en la portería y pasa un disco de hockey a 20 m y en línea recta desde el hielo hasta el ala izquierda, donde Chris Kreider esperaba en la línea azul. Kreider espera a que Girardi llegue a la línea azul y le pasa el disco directamente a través del hielo a 10 m de distancia. ¿Cuál es el desplazamiento final del disco? Vea la siguiente figura.
La posición de una partícula es (a) ¿Cuál es la velocidad de la partícula en 0 s y en s? (b) ¿Cuál es la velocidad media entre 0 s y s?
Clay Matthews, apoyador (linebacker) de los Green Bay Packers, puede alcanzar una rapidez de 10,0 m/s. Al comienzo de una jugada, Matthews corre por el campo a con respecto a la línea de 50 yardas y recorre 8,0 m en 1 s. Luego, corre en línea recta por el campo a con respecto a la línea de 50 yardas durante 12 m, con un tiempo transcurrido de 1,2 s. (a) ¿Cuál es el desplazamiento final de Matthews desde el inicio de la jugada? (b) ¿Cuál es su velocidad media?
El F-35B Lighting II es un avión de combate de despegue corto y aterrizaje vertical. Si realiza un despegue vertical a 20,00 m de altura sobre el suelo y luego sigue una trayectoria de vuelo en un ángulo de con respecto al suelo durante 20,00 km, ¿cuál es el desplazamiento final?
4.2 Vector de aceleración
La posición de una partícula es (a) Determine su velocidad y aceleración en función del tiempo. (b) ¿Cuáles son su velocidad y aceleración en el tiempo t = 0?
La aceleración de una partícula es En t = 0, su posición y velocidad son cero. (a) ¿Cuáles son la posición y la velocidad de la partícula en función del tiempo? (b) Halle la ecuación de la trayectoria de la partícula. Dibuje los ejes de la x y la y y haga un esquema de la trayectoria de la partícula.
Un barco sale del muelle en t = 0 y se dirige a un lago con una aceleración de Un fuerte viento empuja el barco y le imprime una velocidad adicional de (a) ¿Cuál es la velocidad del barco en t = 10 s? (b) ¿Cuál es la posición del barco en t = 10s? Dibuje un esquema de la trayectoria y posición del barco en t = 10 s, mostrando los ejes de la x y la y.
La posición de una partícula para t > 0 está dada por (a) ¿Cuál es la velocidad en función del tiempo? (b) ¿Cuál es la aceleración en función del tiempo? (c) ¿Cuál es la velocidad de la partícula en t = 2,0 s? (d) ¿Cuál es su velocidad en t = 1,0 s y t = 3,0 s? (e) ¿Cuál es la velocidad media entre t = 1,0 s y t = 2,0 s?
La aceleración de una partícula es una constante. En t = 0 la velocidad de la partícula es En t = 4 s la velocidad es (a) ¿Cuál es la aceleración de la partícula? (b) ¿Cómo varían la posición y la velocidad con el tiempo? Supongamos que la partícula está inicialmente en el origen.
Una partícula tiene una función de posición donde los argumentos de las funciones coseno (cos) y seno (sen) están en radianes. (a) ¿Cuál es el vector velocidad? (b) ¿Cuál es el vector de aceleración?
Un jet Lockheed Martin F-35 II Lighting despega de un portaaviones con una longitud de pista de 90 m y una rapidez de despegue de 70 m/s al final de la pista. Los jets se catapultan al espacio aéreo desde la cubierta de un portaaviones con dos fuentes de propulsión: la propulsión del jet y la catapulta. En el momento de abandonar la cubierta del portaaviones, la aceleración del F-35 disminuye hasta una constante de a con respecto a la horizontal. (a) ¿Cuál es la aceleración inicial del F-35 en la cubierta del portaviones para hacerlo volar? (b) Escriba la posición y la velocidad del F-35 en notación vectorial unitaria desde el momento en que abandona la cubierta del portaaviones. (c) ¿A qué altitud se encuentra el avión de combate 5,0 s después de abandonar la cubierta del portaaviones? (d) ¿Cuál es su velocidad y su rapidez en ese momento? (e) ¿Qué distancia ha recorrido horizontalmente?
4.3 Movimiento de proyectil
Se dispara una bala horizontalmente desde la altura del hombro (1,5 m) con una rapidez inicial de 200 m/s. (a) ¿Cuánto tiempo transcurre antes de que la bala toque el suelo? (b) ¿Qué distancia recorre la bala horizontalmente?
Una canica rueda desde una mesa de 1,0 m de altura y cae al suelo en un punto situado a 3,0 m del borde de la mesa en dirección horizontal. (a) ¿Cuánto tiempo está la canica en el aire? (b) ¿Cuál es la rapidez de la canica cuando sale del borde de la mesa? (c) ¿Cuál es su rapidez cuando cae al suelo?
Se lanza un dardo horizontalmente a una rapidez de 10 m/s a la diana de un tablero de dardos que está a 2,4 m de distancia, como en la siguiente figura. (a) ¿A qué distancia debajo del blanco previsto impacta el dardo? (b) ¿Qué le dice su respuesta sobre cómo lanzan los dardos los jugadores expertos?
Un avión que vuela horizontalmente con una rapidez de 500 km/h a una altura de 800 m deja caer una caja de suministros (ver la siguiente figura). Si el paracaídas no se abre, ¿a qué distancia del punto de liberación golpea la caja el suelo?
Supongamos que el avión del problema anterior dispara un proyectil horizontalmente en su dirección de movimiento a una rapidez de 300 m/s con respecto al avión. (a) ¿A qué distancia del punto de lanzamiento impacta el proyectil en el suelo? (b) ¿Cuál es su rapidez cuando impacta en el suelo?
Un lanzador de bolas rápidas puede lanzar una bola de béisbol a una rapidez de 40 m/s (90 mi/h). (a) Suponiendo que el lanzador suelte la bola a 16,7 m del plato de home para que la bola se mueva horizontalmente, ¿cuánto tiempo tarda la bola en llegar al plato de home? (b) ¿Qué distancia cae la bola entre la mano del lanzador y el plato de home?
Un proyectil se lanza con un ángulo de y aterriza 20 s después a la misma altura a la que se lanzó. (a) ¿Cuál es la rapidez inicial del proyectil? (b) ¿Cuál es la altitud máxima? (c) ¿Cuál es el alcance? (d) Calcule el desplazamiento desde el punto de lanzamiento hasta la posición en su trayectoria a los 15 s.
Un jugador de baloncesto lanza hacia una canasta situada a 6,1 m y a 3,0 m del suelo. Si la pelota se suelta a 1,8 m del suelo con un ángulo de sobre la horizontal, ¿cuál debe ser la rapidez inicial para que pase por la canasta?
En un instante determinado, un globo aerostático se encuentra a 100 m de altura y desciende a una rapidez constante de 2,0 m/s. En ese preciso instante, una chica lanza una pelota horizontalmente, con respecto a ella misma, con una rapidez inicial de 20 m/s. Cuando aterrice, ¿dónde encontrará la pelota? Ignore la resistencia del aire.
Un hombre en una motocicleta que viaja a una rapidez uniforme de 10 m/s lanza una lata vacía directamente hacia arriba con respecto a él con una rapidez inicial de 3,0 m/s. Halle la ecuación de la trayectoria vista por un policía al lado de la carretera. Supongamos que la posición inicial de la lata es el punto donde se lanza. Ignore la resistencia del aire.
Un atleta puede saltar una distancia de 8,0 m en el salto largo. ¿Cuál es la distancia máxima que puede saltar el atleta en la Luna, donde la aceleración gravitatoria es una sexta parte de la de la Tierra?
La distancia horizontal máxima a la que un niño puede lanzar una pelota es de 50 m. Asuma que puede lanzar con la misma rapidez inicial en todos los ángulos. ¿A qué altura lanza la pelota cuando lo hace directamente hacia arriba?
Una roca es lanzada desde un acantilado con un ángulo de con respecto a la horizontal. El acantilado tiene 100 m de altura. La rapidez inicial de la roca es de 30 m/s. (a) ¿A qué altura sobre el borde del acantilado se eleva la roca? (b) ¿A qué distancia se ha desplazado horizontalmente cuando se encuentra a la máxima altura? (c) ¿Cuánto tiempo después del lanzamiento golpea el suelo? (d) ¿Cuál es el alcance de la roca? (e) ¿Cuáles son las posiciones horizontal y vertical de la roca con respecto al borde del acantilado en t = 2,0 s, t = 4,0 s y t = 6,0 s?
Tratando de escapar de sus perseguidores, un agente secreto esquía por una pendiente inclinada a por debajo de la horizontal a 60 km/h. Para sobrevivir y aterrizar en la nieve 100 m más abajo, debe superar un desfiladero de 60 m de ancho. ¿Lo consigue? Ignore la resistencia del aire.
Una golfista en una calle se encuentra a 70 m del green, que se encuentra 20 m por debajo del nivel de la calle. Si la golfista golpea la pelota con un ángulo de con una rapidez inicial de 20 m/s, ¿qué tan cerca del green llega?
Se dispara un proyectil contra una colina cuya base está a 300 m de distancia. El proyectil se dispara a sobre la horizontal con una rapidez inicial de 75 m/s. La colina puede ser aproximada por un plano inclinado a de la horizontal. En relación con el sistema de coordenadas mostrado en la siguiente figura, la ecuación de esta recta es ¿En qué parte de la colina cae el proyectil?
Un astronauta en Marte patea un balón de fútbol a un ángulo de con una velocidad inicial de 15 m/s. Si la aceleración de la gravedad en Marte es , (a) ¿cuál es el alcance del golpe del balón de fútbol en una superficie plana? (b) ¿cuál sería el alcance del mismo golpe en la Luna, donde la gravedad es una sexta parte de la Tierra?
Mike Powell ostenta el récord de salto de longitud de 8,95 m, establecido en 1991. Si dejó el suelo a un ángulo de ¿cuál era su rapidez inicial?
El guepardo robot del Instituto Tecnológico de Massachusetts (Massachusetts Institute of Technology, MIT) puede saltar obstáculos de 46 cm de altura y tiene una rapidez de 12,0 km/h. (a) Si el robot se lanza en un ángulo de a esta rapidez, ¿cuál es su altura máxima? (b) ¿Cuál tendría que ser el ángulo de lanzamiento para alcanzar una altura de 46 cm?
El monte Asama, en Japón, es un volcán activo. En 2009, una erupción arrojó rocas volcánicas sólidas que cayeron a 1 km en horizontal desde el cráter. Si las rocas volcánicas fueron lanzadas en un ángulo de con respecto a la horizontal y aterrizaron a 900 m por debajo del cráter, (a) ¿cuál sería su velocidad inicial y (b) cuál es su tiempo de vuelo?
Drew Brees, de los Saints de Nueva Orleans, puede lanzar un balón de fútbol a 23,0 m/s (50 mph). Si angula el lanzamiento a desde la horizontal, ¿qué distancia recorre si debe atraparse a la misma altura a la que se lanzó?
El vehículo lunar itinerante que se utilizó en las últimas misiones Apolo de la NASA alcanzó una rapidez lunar no oficial de por el astronauta Eugene Cernan. Si el rover se moviera a esta rapidez en una superficie lunar plana y golpeara un pequeño bache que lo proyectara fuera de la superficie en un ángulo de ¿cuánto tiempo estaría "en el aire" en la Luna?
Una portería de fútbol tiene 2,44 m de altura. Un jugador patea el balón a una distancia de 10 m de la portería con un ángulo de El balón golpea el travesaño en la parte superior de la portería. ¿Cuál es la rapidez inicial del balón de fútbol?
El monte Olimpo de Marte es el mayor volcán del sistema solar, con una altura de 25 km y un radio de 312 km. Si está de pie en la cima, ¿con qué velocidad inicial tendría que disparar un proyectil desde un cañón en horizontal para superar el volcán y aterrizar en la superficie de Marte? Tenga en cuenta que Marte tiene una aceleración de la gravedad de
En 1999, Robbie Knievel fue el primero en saltar el Gran Cañón en moto. En una parte estrecha del cañón (69,0 m de ancho) y viajando a 35,8 m/s desde la rampa de despegue, llegó al otro lado. ¿Cuál era su ángulo de lanzamiento?
Usted lanza una pelota de béisbol a una rapidez inicial de 15,0 m/s con un ángulo de con respecto a la horizontal. ¿Cuál tendría que ser la rapidez inicial de la pelota a en un planeta que tiene el doble de aceleración de la gravedad que la Tierra para lograr el mismo alcance? Considere el lanzamiento y el impacto en una superficie horizontal.
Aaron Rodgers lanza un balón de fútbol a 20,0 m/s a su receptor, que corre en línea recta por el campo a 9,4 m/s. Si Aarón lanza el balón cuando el receptor está a 10,0 m delante de él, ¿con qué ángulo tiene que lanzarlo Aarón para que el receptor lo atrape a 20,0 m delante de él?
4.4 Movimiento circular uniforme
Un volante de inercia rota a 30 rev/s. ¿Cuál es el ángulo total, en radianes, por el que rota un punto del volante de inercia en 40 s?
Una partícula se desplaza en un círculo de radio 10 m, a una rapidez constante de 20 m/s. ¿Cuál es la magnitud de la aceleración?
Cam Newton, de los Panthers de Carolina, lanza una espiral de fútbol americano perfecta a 8,0 rev/s. El radio de un balón de fútbol profesional es de 8,5 cm en el centro del lado corto. ¿Cuál es la aceleración centrípeta de los cordones del balón?
Una atracción de un parque de diversiones hace girar a sus ocupantes dentro de un espacio en forma de platillo volador. Si la trayectoria circular horizontal que siguen los ocupantes tiene un radio de 8,00 m, ¿a cuántas revoluciones por minuto se someten los ocupantes a una aceleración centrípeta igual a la de la gravedad?
Una corredora que participa en la carrera de 200 metros debe correr alrededor del extremo de una pista que tiene un arco circular con un radio de curvatura de 30,0 m. La corredora comienza la carrera a una rapidez constante. Si culmina la carrera de 200 metros en 23,2 s y corre a una rapidez constante durante toda la carrera, ¿cuál es su aceleración centrípeta al recorrer la parte curva de la pista?
Un cohete experimental a reacción viaja alrededor de la Tierra a lo largo de su ecuador, justo por encima de su superficie. ¿A qué rapidez debe viajar si la magnitud de su aceleración es g?
Un ventilador gira a una constante de 360,0 rev/min. ¿Cuál es la magnitud de la aceleración de un punto de una de sus aspas a 10,0 cm del eje de rotación?
Un punto situado en el segundero de un gran reloj tiene una aceleración radial de ¿A qué distancia está el punto del eje de rotación del segundero?
4.5 Movimiento relativo en una y dos dimensiones
Los ejes de coordenadas del marco de referencia permanecen paralelos a los de S, ya que se aleja de S a una velocidad constante (a) Si en el tiempo t = 0 los orígenes coinciden, ¿cuál es la posición del origen en el marco S en función del tiempo? (b) ¿Cómo se relaciona la posición de la partícula para y medida en S y respectivamente? (c) ¿Cuál es la relación entre las velocidades de las partículas (d) ¿Cómo están las aceleraciones relacionadas?
Los ejes de coordenadas del marco de referencia permanecen paralelos a los de S, ya que se aleja de S a una velocidad constante . (a) Si en el tiempo t = 0 los orígenes coinciden, ¿cuál es la posición del origen en el marco S en función del tiempo? (b) ¿Cómo se relaciona la posición de la partícula para y , medida en S y respectivamente? (c) ¿Cuál es la relación entre las velocidades de las partículas (d) ¿Cómo están las aceleraciones relacionadas?
La velocidad de una partícula en el marco de referencia A es La velocidad del marco de referencia A con respecto al marco de referencia B es y la velocidad del marco de referencia B con respecto a C es ¿Cuál es la velocidad de la partícula en el marco de referencia C?
Las gotas de lluvia caen verticalmente a 4,5 m/s con respecto a la tierra. ¿Qué mide un observador en un auto que se mueve a 22,0 m/s en línea recta como la velocidad de las gotas de lluvia?
Una gaviota puede volar a una velocidad de 9,00 m/s en aire en calma. (a) Si el ave tarda 20,0 min en recorrer 6,00 km en línea recta hacia un viento que se aproxima, ¿cuál es la velocidad del viento? (b) Si el ave da la vuelta y vuela con el viento, ¿cuánto tardará en recorrer de vuelta 6,00 km?
Un barco zarpa de Rotterdam con rumbo norte a 7,00 m/s respecto al agua. La corriente marina local es de 1,50 m/s en una dirección al norte del este. ¿Cuál es la velocidad del barco con respecto a la Tierra?
Un bote se puede remar a 8,0 km/h en aguas tranquilas. (a) ¿Cuánto tiempo se necesita para remar 1,5 km aguas abajo en un río que se mueve a 3,0 km/h con respecto a la orilla? (b) ¿Cuánto tiempo se necesita para el viaje de vuelta? (c) ¿En qué dirección debe apuntar el bote para remar en línea recta por el río? (d) Supongamos que el río tiene 0,8 km de ancho. ¿Cuál es la velocidad del bote con respecto a la Tierra y cuánto tiempo se necesita para llegar a la orilla opuesta? (e) Supongamos, en cambio, que el bote se dirige directamente al otro lado del río. ¿Cuánto tiempo se necesita para cruzar y a qué distancia aguas abajo está el bote cuando llega a la orilla opuesta?
Una avioneta vuela a 200 km/h en aire en calma. Si el viento sopla directamente del oeste a 50 km/h, (a) ¿en qué dirección debe la piloto dirigir su avión para moverse directamente hacia el norte por tierra y (b) cuánto tiempo tarda en alcanzar un punto a 300 km directamente al norte de su punto de partida?
Un ciclista que viaja hacia el sureste por una carretera a 15 km/h siente un viento que sopla del suroeste a 25 km/h. Para un observador inmóvil, ¿cuáles son la rapidez y la dirección del viento?
Un río se mueve hacia el este a 4 m/s. Un bote parte del muelle en dirección al norte del oeste a 7 m/s. Si el río tiene 1.800 m de ancho, (a) ¿cuál es la velocidad del bote con respecto a la Tierra y (b) cuánto tarda el bote en cruzar el río?