Omitir e ir al contenidoIr a la página de accesibilidadMenú de atajos de teclado
Logo de OpenStax
Cálculo volumen 1

Introducción

Cálculo volumen 1Introducción

Índice
  1. Prefacio
  2. 1 Funciones y gráficos
    1. Introducción
    2. 1.1 Repaso de las funciones
    3. 1.2 Clases básicas de funciones
    4. 1.3 Funciones trigonométricas
    5. 1.4 Funciones inversas
    6. 1.5 Funciones exponenciales y logarítmicas
    7. Revisión del capítulo
      1. Términos clave
      2. Ecuaciones clave
      3. Conceptos clave
      4. Ejercicios de repaso
  3. 2 Límites
    1. Introducción
    2. 2.1 Un repaso previo del cálculo
    3. 2.2 El límite de una función
    4. 2.3 Las leyes de los límites
    5. 2.4 Continuidad
    6. 2.5 La definición precisa de un límite
    7. Revisión del capítulo
      1. Términos clave
      2. Ecuaciones clave
      3. Conceptos clave
      4. Ejercicios de repaso
  4. 3 Derivadas
    1. Introducción
    2. 3.1 Definir la derivada
    3. 3.2 La derivada como función
    4. 3.3 Reglas de diferenciación
    5. 3.4 Las derivadas como tasas de cambio
    6. 3.5 Derivadas de funciones trigonométricas
    7. 3.6 La regla de la cadena
    8. 3.7 Derivadas de funciones inversas
    9. 3.8 Diferenciación implícita
    10. 3.9 Derivadas de funciones exponenciales y logarítmicas
    11. Revisión del capítulo
      1. Términos clave
      2. Ecuaciones clave
      3. Conceptos clave
      4. Ejercicios de repaso
  5. 4 Aplicaciones de las derivadas
    1. Introducción
    2. 4.1 Tasas relacionadas
    3. 4.2 Aproximaciones lineales y diferenciales
    4. 4.3 Máximos y mínimos
    5. 4.4 El teorema del valor medio
    6. 4.5 Las derivadas y la forma de un gráfico
    7. 4.6 Límites al infinito y asíntotas
    8. 4.7 Problemas de optimización aplicados
    9. 4.8 La regla de L'Hôpital
    10. 4.9 Método de Newton
    11. 4.10 Antiderivadas
    12. Revisión del capítulo
      1. Términos clave
      2. Ecuaciones clave
      3. Conceptos clave
      4. Ejercicios de repaso
  6. 5 Integración
    1. Introducción
    2. 5.1 Aproximación de áreas
    3. 5.2 La integral definida
    4. 5.3 El teorema fundamental del cálculo
    5. 5.4 Fórmulas de integración y el teorema del cambio neto
    6. 5.5 Sustitución
    7. 5.6 Integrales con funciones exponenciales y logarítmicas
    8. 5.7 Integrales que resultan en funciones trigonométricas inversas
    9. Revisión del capítulo
      1. Términos clave
      2. Ecuaciones clave
      3. Conceptos clave
      4. Ejercicios de repaso
  7. 6 Aplicaciones de la integración
    1. Introducción
    2. 6.1 Áreas entre curvas
    3. 6.2 Determinar los volúmenes mediante el corte
    4. 6.3 Volúmenes de revolución: capas cilíndricas
    5. 6.4 Longitud del arco de una curva y superficie
    6. 6.5 Aplicaciones físicas
    7. 6.6 Momentos y centros de masa
    8. 6.7 Integrales, funciones exponenciales y logaritmos
    9. 6.8 Crecimiento y decaimiento exponencial
    10. 6.9 Cálculo de las funciones hiperbólicas
    11. Revisión del capítulo
      1. Términos clave
      2. Ecuaciones clave
      3. Conceptos clave
      4. Ejercicios de repaso
  8. A Tabla de integrales
  9. B Tabla de derivadas
  10. C Repaso de Precálculo
  11. Clave de respuestas
    1. Capítulo 1
    2. Capítulo 2
    3. Capítulo 3
    4. Capítulo 4
    5. Capítulo 5
    6. Capítulo 6
  12. Índice
Fotografía de una falla sísmica.
Figura 1.1 Una parte de la falla de San Andrés en California. En fallas importantes como esta se producen la mayoría de los terremotos más fuertes que han sido registrados (créditos: modificación del trabajo de Robb Hannawacker, National Park Service [NPS]).

Durante los años recientes se han producido grandes terremotos en varios países del mundo. En enero de 2010, un terremoto de magnitud 7,3 sacudió Haití. En marzo de 2011, un terremoto de magnitud 9 sacudió el noreste de Japón. En abril de 2014, un terremoto de 8,2 grados de magnitud sacudió las costas del norte de Chile. ¿Qué significan estos números? En concreto, ¿cómo se compara un terremoto de magnitud 9 con uno de magnitud 8,2? ¿O con uno de 7,3? Más adelante en este capítulo mostraremos cómo se utilizan las funciones logarítmicas para comparar la intensidad relativa de dos terremotos con base en la magnitud de cada uno de ellos (vea el Ejemplo 1.39).

El cálculo es la matemática que describe los cambios en las funciones. En este capítulo repasaremos todas las funciones necesarias para el estudio del cálculo. Definiremos las funciones polinómicas, racionales, trigonométricas, exponenciales y logarítmicas. Repasaremos cómo evaluar estas funciones y mostramos las propiedades de sus gráficos. Proporcionaremos ejemplos de ecuaciones con términos que implican estas funciones e ilustramos las técnicas algebraicas necesarias para resolverlas. En resumen, este capítulo sienta las bases para el material que viene. Es esencial estar familiarizado con estas ideas antes de proceder a la introducción formal del cálculo en el siguiente capítulo.

Solicitar una copia impresa

As an Amazon Associate we earn from qualifying purchases.

Cita/Atribución

¿Desea citar, compartir o modificar este libro? Este libro utiliza la Creative Commons Attribution-NonCommercial-ShareAlike License y debe atribuir a OpenStax.

Información de atribución
  • Si redistribuye todo o parte de este libro en formato impreso, debe incluir en cada página física la siguiente atribución:
    Acceso gratis en https://openstax.org/books/c%C3%A1lculo-volumen-1/pages/1-introduccion
  • Si redistribuye todo o parte de este libro en formato digital, debe incluir en cada vista de la página digital la siguiente atribución:
    Acceso gratuito en https://openstax.org/books/c%C3%A1lculo-volumen-1/pages/1-introduccion
Información sobre citas

© 2 mar. 2022 OpenStax. El contenido de los libros de texto que produce OpenStax tiene una licencia de Creative Commons Attribution-NonCommercial-ShareAlike License . El nombre de OpenStax, el logotipo de OpenStax, las portadas de libros de OpenStax, el nombre de OpenStax CNX y el logotipo de OpenStax CNX no están sujetos a la licencia de Creative Commons y no se pueden reproducir sin el previo y expreso consentimiento por escrito de Rice University.