Skip to Content
OpenStax Logo
Physics

Extended Response

PhysicsExtended Response
  1. Preface
  2. 1 What is Physics?
    1. Introduction
    2. 1.1 Physics: Definitions and Applications
    3. 1.2 The Scientific Methods
    4. 1.3 The Language of Physics: Physical Quantities and Units
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  3. 2 Motion in One Dimension
    1. Introduction
    2. 2.1 Relative Motion, Distance, and Displacement
    3. 2.2 Speed and Velocity
    4. 2.3 Position vs. Time Graphs
    5. 2.4 Velocity vs. Time Graphs
    6. Key Terms
    7. Section Summary
    8. Key Equations
    9. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    10. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  4. 3 Acceleration
    1. Introduction
    2. 3.1 Acceleration
    3. 3.2 Representing Acceleration with Equations and Graphs
    4. Key Terms
    5. Section Summary
    6. Key Equations
    7. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    8. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  5. 4 Forces and Newton’s Laws of Motion
    1. Introduction
    2. 4.1 Force
    3. 4.2 Newton's First Law of Motion: Inertia
    4. 4.3 Newton's Second Law of Motion
    5. 4.4 Newton's Third Law of Motion
    6. Key Terms
    7. Section Summary
    8. Key Equations
    9. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    10. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  6. 5 Motion in Two Dimensions
    1. Introduction
    2. 5.1 Vector Addition and Subtraction: Graphical Methods
    3. 5.2 Vector Addition and Subtraction: Analytical Methods
    4. 5.3 Projectile Motion
    5. 5.4 Inclined Planes
    6. 5.5 Simple Harmonic Motion
    7. Key Terms
    8. Section Summary
    9. Key Equations
    10. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    11. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  7. 6 Circular and Rotational Motion
    1. Introduction
    2. 6.1 Angle of Rotation and Angular Velocity
    3. 6.2 Uniform Circular Motion
    4. 6.3 Rotational Motion
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  8. 7 Newton's Law of Gravitation
    1. Introduction
    2. 7.1 Kepler's Laws of Planetary Motion
    3. 7.2 Newton's Law of Universal Gravitation and Einstein's Theory of General Relativity
    4. Key Terms
    5. Section Summary
    6. Key Equations
    7. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    8. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  9. 8 Momentum
    1. Introduction
    2. 8.1 Linear Momentum, Force, and Impulse
    3. 8.2 Conservation of Momentum
    4. 8.3 Elastic and Inelastic Collisions
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  10. 9 Work, Energy, and Simple Machines
    1. Introduction
    2. 9.1 Work, Power, and the Work–Energy Theorem
    3. 9.2 Mechanical Energy and Conservation of Energy
    4. 9.3 Simple Machines
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  11. 10 Special Relativity
    1. Introduction
    2. 10.1 Postulates of Special Relativity
    3. 10.2 Consequences of Special Relativity
    4. Key Terms
    5. Section Summary
    6. Key Equations
    7. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    8. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  12. 11 Thermal Energy, Heat, and Work
    1. Introduction
    2. 11.1 Temperature and Thermal Energy
    3. 11.2 Heat, Specific Heat, and Heat Transfer
    4. 11.3 Phase Change and Latent Heat
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  13. 12 Thermodynamics
    1. Introduction
    2. 12.1 Zeroth Law of Thermodynamics: Thermal Equilibrium
    3. 12.2 First law of Thermodynamics: Thermal Energy and Work
    4. 12.3 Second Law of Thermodynamics: Entropy
    5. 12.4 Applications of Thermodynamics: Heat Engines, Heat Pumps, and Refrigerators
    6. Key Terms
    7. Section Summary
    8. Key Equations
    9. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    10. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  14. 13 Waves and Their Properties
    1. Introduction
    2. 13.1 Types of Waves
    3. 13.2 Wave Properties: Speed, Amplitude, Frequency, and Period
    4. 13.3 Wave Interaction: Superposition and Interference
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  15. 14 Sound
    1. Introduction
    2. 14.1 Speed of Sound, Frequency, and Wavelength
    3. 14.2 Sound Intensity and Sound Level
    4. 14.3 Doppler Effect and Sonic Booms
    5. 14.4 Sound Interference and Resonance
    6. Key Terms
    7. Section Summary
    8. Key Equations
    9. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    10. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  16. 15 Light
    1. Introduction
    2. 15.1 The Electromagnetic Spectrum
    3. 15.2 The Behavior of Electromagnetic Radiation
    4. Key Terms
    5. Section Summary
    6. Key Equations
    7. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    8. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  17. 16 Mirrors and Lenses
    1. Introduction
    2. 16.1 Reflection
    3. 16.2 Refraction
    4. 16.3 Lenses
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  18. 17 Diffraction and Interference
    1. Introduction
    2. 17.1 Understanding Diffraction and Interference
    3. 17.2 Applications of Diffraction, Interference, and Coherence
    4. Key Terms
    5. Section Summary
    6. Key Equations
    7. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    8. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  19. 18 Static Electricity
    1. Introduction
    2. 18.1 Electrical Charges, Conservation of Charge, and Transfer of Charge
    3. 18.2 Coulomb's law
    4. 18.3 Electric Field
    5. 18.4 Electric Potential
    6. 18.5 Capacitors and Dielectrics
    7. Key Terms
    8. Section Summary
    9. Key Equations
    10. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    11. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  20. 19 Electrical Circuits
    1. Introduction
    2. 19.1 Ohm's law
    3. 19.2 Series Circuits
    4. 19.3 Parallel Circuits
    5. 19.4 Electric Power
    6. Key Terms
    7. Section Summary
    8. Key Equations
    9. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    10. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  21. 20 Magnetism
    1. Introduction
    2. 20.1 Magnetic Fields, Field Lines, and Force
    3. 20.2 Motors, Generators, and Transformers
    4. 20.3 Electromagnetic Induction
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  22. 21 The Quantum Nature of Light
    1. Introduction
    2. 21.1 Planck and Quantum Nature of Light
    3. 21.2 Einstein and the Photoelectric Effect
    4. 21.3 The Dual Nature of Light
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  23. 22 The Atom
    1. Introduction
    2. 22.1 The Structure of the Atom
    3. 22.2 Nuclear Forces and Radioactivity
    4. 22.3 Half Life and Radiometric Dating
    5. 22.4 Nuclear Fission and Fusion
    6. 22.5 Medical Applications of Radioactivity: Diagnostic Imaging and Radiation
    7. Key Terms
    8. Section Summary
    9. Key Equations
    10. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Performance Task
    11. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  24. 23 Particle Physics
    1. Introduction
    2. 23.1 The Four Fundamental Forces
    3. 23.2 Quarks
    4. 23.3 The Unification of Forces
    5. Key Terms
    6. Section Summary
    7. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Performance Task
    8. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  25. A | Reference Tables
  26. Index

Extended Response

18.1 Electrical Charges, Conservation of Charge, and Transfer of Charge

77.
Imagine that the magnitude of the charge on the electron differed very slightly from that of the proton. How would this affect life on Earth and physics in general?
  1. Many macroscopic objects would be charged, so we would experience the enormous force of electricity on a daily basis.
  2. Many macroscopic objects would be charged, so we would experience the small force of electricity on a daily basis.
  3. Many macroscopic objects would be charged, but it would not affect life on Earth and physics in general.
  4. Macroscopic objects would remain neutral, so it would not affect life on Earth and physics in general.
78.

True or false—Conservation of charge is like balancing a budget.

  1. true
  2. false
79.

True or false—Although wood is an insulator, lightning can travel through a tree to reach Earth.

  1. true
  2. false
80.

True or false—An eccentric inventor attempts to levitate by first placing a large negative charge on himself and then putting a large positive charge on the ceiling of his workshop. Instead, while he attempts to place a large negative charge on himself, his clothes fly off.

  1. true
  2. false

18.2 Coulomb's law

81.

Electrostatic forces are enormous compared to gravitational force. Why do you not notice electrostatic forces in everyday life, whereas you do notice the force due to gravity?

  1. Because there are two types of charge, but only one type of mass exists.
  2. Because there is only one type of charge, but two types of mass exist.
  3. Because opposite charges cancel each other, while gravity does not cancel out.
  4. Because opposite charges do not cancel each other, while gravity cancels out.
82.

A small metal sphere with a net charge of 3.0 nC is touched to a second small metal sphere that is initially neutral. The spheres are then placed 20 cm apart. What is the force between the spheres?

  1. 1.02 × 10−7 N
  2. 2.55 × 10−7 N
  3. 5.1 × 10−7 N
  4. 20.4 × 10−7 N

18.3 Electric Field

83.

Point charges are located at each corner of a square with sides of 5.0 cm . The top-left charge is q1 = 8.0 nC The top right charge is q2 = 4.0 nC. The bottom-right charge is q3 = 4.0 nC. The bottom-left charge is q4 = 8.0 nC. What is the electric field at the point midway between charges q2 and q3?

  1. (2.1× 10 4  N/C) x ^ (2.1× 10 4  N/C) x ^
  2. (2.3× 10 4  N/C) x ^ (2.3× 10 4  N/C) x ^
  3. (4.1× 10 4  N/C) x ^ (4.1× 10 4  N/C) x ^
  4. (4.6× 10 4  N/C) x ^ (4.6× 10 4  N/C) x ^
84.

A long straight wire carries a uniform positive charge distribution. Draw the electric field lines in a plane containing the wire at a location far from the ends of the wire. Do not worry about the magnitude of the charge on the wire.

  1. Take the wire on the x-axis, and draw electric-field lines perpendicular to it.
  2. Take the wire on the x-axis, and draw electric-field lines parallel to it.
  3. Take the wire on the y-axis, and draw electric-field lines along it.
  4. Take the wire on the z-axis, and draw electric-field lines along it.

18.4 Electric Potential

85.

A square grid has charges of Q = 10 nC are each corner. The sides of the square at 10 cm . How much energy does it require to bring a q = 1.0 nC charge from very far away to the point at the center of this square?

  1. 1.3 × 10−6 J
  2. 2.5 × 10−6 J
  3. 3.8 × 10−6 J
  4. 5.1 × 10−6 J
86.

How are potential difference and electric-field strength related for a constant electric field?

  1. The magnitude of electric-field strength is equivalent to the potential divided by the distance.
  2. The magnitude of electric-field strength is equivalent to the product of the electric potential and the distance.
  3. The magnitude of electric-field strength is equivalent to the difference between magnitude of the electric potential and the distance.
  4. The magnitude of electric-field strength is equivalent to the sum of the magnitude of the electric potential and the distance.

18.5 Capacitors and Dielectrics

87.

A 12 μF air-filled capacitor has 12 V across it. If the surface charge on each capacitor plate is σ = 7.2 mC / m2, what is the attractive force of one capacitor plate toward the other?

  1. 0.81 × 105 N
  2. 0.81 × 106 N
  3. 1.2 × 105 N
  4. 1.2 × 106 N
88.

Explain why capacitance should be inversely proportional to the separation between the plates of a capacitor.

  1. Capacitance is directly proportional to the electric field, which is inversely proportional to the distance between the capacitor plates.
  2. Capacitance is inversely proportional to the electric field, which is inversely proportional to the distance between the capacitor plates.
  3. Capacitance is inversely proportional to the electric field, which is directly proportional to the distance between the capacitor plates.
  4. Capacitance is directly proportional to the electric field, which is directly proportional to the distance between the capacitor plates.
Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute “Texas Education Agency (TEA)." The original material is available at: https://www.texasgateway.org/book/tea-physics. Changes were made to the original material, including updates to art, structure, and other content updates.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/physics/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/physics/pages/1-introduction
Citation information

© Sep 2, 2020 Texas Education Agency (TEA). The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.