Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Organic Chemistry

Why This Chapter?

Organic ChemistryWhy This Chapter?

A protein structure portrayed as a ribbon diagram, with coiled magenta, green, rust, and purple portions.
Figure 29.1 Acyl CoA dehydrogenase is an enzyme that catalyzes the introduction of a C═C double bond into fatty acids during their metabolism. (credit: modification of image from the RCSB PDF (rcsb.org) of PDB ID 2WBI. Muniz, J.R.C., Guo, K., Savitsky, P., Roos, A., Yue, W., Pilka, E., Vondelft, F., Edwards, A.M., Bountra, C., Arrowsmith, C.H., Weigelt, J., Oppermann, U. Crystal structure of human Acyl-CoA dehydrogenase 11)

29 • Why This Chapter?

In this chapter, we’ll look at some of the pathways by which organisms carry out their chemistry, focusing primarily on how they metabolize fats and carbohydrates. The treatment will be far from complete, but it should give you an idea of the kinds of processes that occur.

Anyone who wants to understand or contribute to the revolution now taking place in the biological sciences must first understand life processes at the molecular level. This understanding, in turn, must be based on a detailed knowledge of the chemical reactions and pathways used by living organisms. Just knowing what occurs is not enough; it’s also necessary to understand how and why organisms use the chemistry they do.

Biochemical reactions are not mysterious. Even though the biological reactions that take place in living organisms often appear complicated, they follow the same rules of reactivity as laboratory reactions and they operate by the same mechanisms.

Some of the molecules we’ll be encountering are substantially larger and more complex than those we’ve been dealing with thus far. But don’t be intimidated; keep your focus on the parts of the molecules where changes occur, and ignore the parts where nothing changes. The reactions themselves are exactly the same additions, eliminations, substitutions, carbonyl condensations, and so forth, that we’ve been dealing with all along. By the end of this chapter, it should be clear that the chemistry of living organisms is organic chemistry.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution-NonCommercial-ShareAlike License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/organic-chemistry/pages/1-why-this-chapter
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/organic-chemistry/pages/1-why-this-chapter
Citation information

© Aug 5, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.