4.1 How Do We Choose A Model System?
Allen Shotwell, R. (2013). The revival of vivisection in the sixteenth century. Journal of the History of Biology, 46(2), 171–197. https://doi.org/10.1007/s10739-012-9326-8
Buffenstein, R., Park, T., Hanes, M., & Artwohl, J. E. (2012). Naked mole rat. In The laboratory rabbit, guinea pig, hamster, and other rodents (pp. 1055–1074). Academic Press.
Clancy, B., Darlington, R. B., & Finlay, B. L. (2001). Translating developmental time across mammalian species. Neuroscience, 105(1), 7–17. https://doi.org/10.1016/S0306-4522(01)00171-3
Daw, N. W. (2009). The foundations of development and deprivation in the visual system. Journal of Physiology, 587(12), 2769–2773. https://doi.org/10.1113/jphysiol.2009.170001
de Sousa, A. A., Rigby Dames, B. A., Graff, E. C., Mohamedelhassan, R., Vassilopoulos, T., & Charvet, C. J. (2023). Going beyond established model systems of Alzheimer's disease: Companion animals provide novel insights into the neurobiology of aging. Communications Biology, 6(1), 655. https://doi.org/10.1038/s42003-023-05034-3
Moss, C. F., & Sinha, S. R. (2003). Neurobiology of echolocation in bats. Current Opinion in Neurobiology, 13(6), 751–758. https://doi.org/10.1016/j.conb.2003.10.016
Prentice, E. D., Crouse, D. A., & Mann, M. D. (1992). Scientific merit review: The role of the IACUC. ILAR Journal, 34(1-2), 15–19. https://doi.org/10.1093/ilar.34.1-2.15
Quadrato, G., Brown, J., & Arlotta, P. (2016). The promises and challenges of human brain organoids as models of neuropsychiatric disease. Nature Medicine, 22(11), 1220–1228. https://doi.org/10.1038/nm.4214
Schwiening, C. J. (2012). A brief historical perspective: Hodgkin and Huxley. Journal of Physiology, 590(11), 2571–2575. https://doi.org/10.1113/jphysiol.2012.230458
Striedter, G. F. (2005). Principles of brain evolution. Sinauer Associates.
Striedter, G. F. (2016). Neurobiology: A functional approach. Oxford University Press.
4.2 How Do We Compare Brains?
Briscoe, S. D. (2019). Field homology: Still a meaningless concept. Brain, Behavior and Evolution, 93, 1–3. https://doi.org/10.1159/000500770
Butler, A. B. (1995). The dorsal thalamus of jawed vertebrates: A comparative viewpoint. Brain, Behavior and Evolution, 46(4–5), 209–223. https://doi.org/10.1159/000113275
Butler, A. B., & Saidel, W. M. (2000). Defining sameness: Historical, biological, and generative homology. BioEssays, 22(9), 846–853.
Butler, A. B., Reiner, A., & Karten, H. J. (2011). Evolution of the amniote pallium and the origins of mammalian neocortex. Annals of the New York Academy of Sciences, 1225(1), 14–27. https://doi.org/10.1111/j.1749-6632.2011.06006.x
de Sousa, A. A., Rigby Dames, B. A., Graff, E. C., Mohamedelhassan, R., Vassilopoulos, T., & Charvet, C. J. (2023). Going beyond established model systems of Alzheimer's disease: Companion animals provide novel insights into the neurobiology of aging. Communications Biology, 6, 655. https://doi.org/10.1038/s42003-023-05034-3
Karten, H. J. (1991). Homology and evolutionary origins of the “neocortex”. Brain, Behavior and Evolution, 38(4-5), 264–272. https://doi.org/10.1159/000114393
Medina, L., & Reiner, A. (2000). Do birds possess homologues of mammalian primary visual, somatosensory and motor cortices? Trends in Neurosciences, 23(1), 1–12. https://doi.org/10.1016/s0166-2236(99)01486-1
Puelles, L., Kuwana, E., Puelles, E., Bulfone, A., Shimamura, K., Keleher, J., Smiga, S., & Rubenstein, J. L. R. (2000). Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6 and Tbr-1. Journal of Comparative Neurology, 424(3), 409–438.
Striedter, G. F. (1997). The telencephalon of tetrapods in evolution. Brain, Behavior and Evolution, 49(4), 179–213. https://doi.org/10.1159/000112991
Striedter, G. F. (2005). Principles of brain evolution. Sinauer Associates.
4.3 How Do Brains Vary in Size?
Aboitiz, F. (1996). Does bigger mean better? Evolutionary determinants of brain size and structure. Brain, Behavior and Evolution, 47(5), 225–245. https://doi.org/10.1159/000113243
Barton, R. A., & Harvey, P. H. (2000). Mosaic evolution of brain structure in mammals. Nature, 405, 1055–1058. https://doi.org/10.1038/35016580
Bush, E. C., & Allman, J. M. (2004). The scaling of frontal cortex in primates and carnivores. Proceedings of the National Academy of Sciences, 101(11), 3962–3966. https://doi.org/10.1073/pnas.0305760101
Corbin, J. G., Nery, S., & Fishell, G. (2001). Telencephalic cells take a tangent: Non-radial migration in the mammalian forebrain. Nature Neuroscience, 4(11), 1177–1182. https://doi.org/10.1038/nn749
de Sousa, A. A., Beaudet, A., Calvey, T., Bardo, A., Benoit, J., Charvet, C. J., Dehay, C., Gómez-Robles, A., Gunz, P., Heuer, K., van den Heuvel, M. P., Hurst, S., Lauters, P., Reed, D., Salagnon, M., Sherwood, C. C., Ströckens, F., Tawane, M., Todorov, O. S., Toro, R., & Wei, Y. (2023). From fossils to mind. Communications Biology, 6, 636. https://doi.org/10.1038/s42003-023-04803-4
Dial, K. P., Greene, E., & Irschick, D. J. (2008). Allometry of behavior. Trends in Ecology & Evolution, 23(7), 394–401. https://doi.org/10.1016/j.tree.2008.03.005
Dooley, J. C., Donaldson, M. S., & Krubitzer, L. A. (2017). Cortical plasticity following stripe rearing in the marsupial Monodelphis domestica: Neural response properties of V1. Journal of Neurophysiology, 117(2), 566–581. https://doi.org/10.1152/jn.00431.2016
Dooley, J. C., & Krubitzer, L. A. (2019). Alterations in cortical and thalamic connections of somatosensory cortex following early loss of vision. Journal of Comparative Neurology, 527(10), 1675–1688. https://doi.org/10.1002/cne.24582
Finlay, B. L., & Darlington, R. B. (1995). Linked regularities in the development and evolution of mammalian brains. Science, 268(5217), 1578–1584. https://doi.org/10.1126/science.7777856
Finlay, B. L., Darlington, R. B., & Nicastro, N. (2001). Developmental structure in brain evolution. Brain, Behavior and Evolution, 24(2), 263–278.
Krubitzer, L. (1995). The organization of neocortex in mammals: Are species differences really so different? Trends in Neurosciences, 18(9), 408–417. https://doi.org/10.1016/0166-2236(95)93938-T
Krubitzer, L. A., & Prescott, T. J. (2018). The combinatorial creature: Cortical phenotypes within and across lifetimes. Trends in Neurosciences, 41, 744–762. https://doi.org/10.1016/j.tins.2018.08.002
Krubitzer, L., Manger, P., Pettigrew, J., & Calford, M. (1995). Organization of somatosensory cortex in monotremes: In search of the prototypical plan. Journal of Comparative Neurology, 351(2), 261–306. https://doi.org/10.1002/cne.903510206
Moreno, S., & Bidelman, G. M. (2014). Examining neural plasticity and cognitive benefit through the unique lens of musical training. Hearing Research, 308, 84–97. https://doi.org/10.1016/j.heares.2013.09.012
Ramamurthy, D. L., & Krubitzer, L. A. (2018). Neural coding of whisker-mediated touch in primary somatosensory cortex is altered following early blindness. Journal of Neuroscience, 38(27), 6172–6189. https://doi.org/10.1523/JNEUROSCI.0066-18.2018
Recanzone, G. H., Merzenich, M. M., Jenkins, W. M., Grajski, K. A., & Dinse, H. R. (1992). Topographic reorganization of the hand representation in cortical area 3b owl monkeys trained in a frequency-discrimination task. Journal of Neurophysiology, 67(5), 1031–1056. https://doi.org/10.1152/jn.1992.67.5.1031
Recanzone, G. H., Schreiner, C. E., & Merzenich, M. M. (1993). Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. Journal of Neuroscience, 13(1), 87–103. https://doi.org/10.1523/jneurosci.13-01-00087.1993
Reep, R. L., Finlay, B. L., & Darlington, R. B. (2007). The limbic system in mammalian brain evolution. Brain, Behavior and Evolution, 70(1), 57–70. https://doi.org/10.1159/000101491
Stephan, H., Frahm, H., & Baron, G. (1981). New and revised data on volumes of brain structures in insectivores and primates. Folia Primatologica, 35(1), 1–29. https://doi.org/10.1159/000155963
Strait, D. L., & Kraus, N. (2014). Biological impact of auditory expertise across the life span: Musicians as a model of auditory learning. Hearing Research, 308, 109–121. https://doi.org/10.1016/j.heares.2013.08.004
Yopak, K. E., Lisney, T. J., Darlington, R. B., Collin, S. P., Montgomery, J. C., & Finlay, B. L. (2010). A conserved pattern of brain scaling from sharks to primates. Proceedings of the National Academy of Sciences, 107(29), 12946–12951. https://doi.org/10.1073/pnas.1002195107
4.4 How Do Connections Differ Across Species?
Axer, M., & Amunts, K. (2022). Scale matters: The nested human connectome. Science, 378(6619), 500–504. https://doi.org/10.1126/science.abq2599
Charvet, C. J., Ofori, K., Baucum, C., Sun, J., Modrell, M. S., Hekmatyar, K., Edlow, B. L., & van der Kouwe, A. J. (2022). Tracing modification to cortical circuits in human and nonhuman primates from high-resolution tractography, transcription, and temporal dimensions. Journal of Neuroscience, 42(18), 3749–3767. https://doi.org/10.1523/JNEUROSCI.1506-21.2022
Lee, M. H., Smyser, C. D., & Shimony, J. S. (2013). Resting-state fMRI: A review of methods and clinical applications. American Journal of Neuroradiology, 34(10), 1866–1872. https://doi.org/10.3174/ajnr.A3263
Liao, X., Vasilakos, A. V., & He, Y. (2017). Small-world human brain networks: Perspectives and challenges. Neuroscience and Biobehavioral Reviews, 77, 286–300. https://doi.org/10.1016/j.neubiorev.2017.03.018
Liu, Z. Q., Zheng, Y. Q., & Misic, B. (2020). Network topology of the marmoset connectome. Network Neuroscience, 4(4), 1181–1196. https://doi.org/10.1162/netn_a_00159
Modha, D. S., & Singh, R. (2010). Network architecture of the long-distance pathways in the macaque brain. Proceedings of the National Academy of Sciences, 107(30), 13485–13490. https://doi.org/10.1073/pnas.1008054107
Murphy, K., Birn, R. M., & Bandettini, P. A. (2013). Resting-state fMRI confounds and cleanup. NeuroImage, 80, 349–359. https://doi.org/10.1016/j.neuroimage.2013.04.001
Rilling, J. K., Glasser, M. F., Preuss, T. M., Ma, X., Zhao, T., Hu, X., & Behrens, T. E. (2008). The evolution of the arcuate fasciculus revealed with comparative DTI. Nature Neuroscience, 11(4), 426–428. https://doi.org/10.1038/nn2072
Oh, S. W., Harris, J. A., Ng, L., Winslow, B., Cain, N., Mihalas, S., Wang, Q., Lau, C., Kuan, L., Henry, A. M., Mortrud, M. T., Ouellette, B., Nguyen, T. N., Sorensen, S. A., Slaughterbeck, C. R., Wakeman, W., Li, Y., Feng, D., Ho, A., Nicholas, E., Hirokawa, K. E., Bohn, P., Joines, K. M., Peng, H., Hawrylycz, M. J., Phillips, J. W., Hohmann, J. G., Wohnoutka, P., Gerfen, C. R., Koch, C., Bernard, A., Dang, C., Jones, A. R., & Zeng, H. (2014). A mesoscale connectome of the mouse brain. Nature, 508, 207–214. https://doi.org/10.1038/nature13186
Wedeen, V. J., Wang, R. P., Schmahmann, J. D., Benner, T., Tseng, W. Y. I., Dai, G., Pandya, D. N., Hagmann, P., D'Arceuil, H., & de Crespigny, A. J. (2008). Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. NeuroImage, 41(4), 1267–1277. https://doi.org/10.1016/j.neuroimage.2008.03.036
Wedeen, V. J., Hagmann, P., Tseng, W. Y. I., Reese, T. G., & Weisskoff, R. M. (2005). Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magnetic Resonance in Medicine, 54(6), 1377–1386. https://doi.org/10.1002/mrm.20642
4.5 How Can Diverse Species Help Us Make Inferences about Human Neurobiology?
Ahern, T. H., Olsen, S., Tudino, R., & Beery, A. K. (2021). Natural variation in the oxytocin receptor gene and rearing interact to influence reproductive and nonreproductive social behavior and receptor binding. Psychoneuroendocrinology, 128, 105209. https://doi.org/10.1016/j.psyneuen.2021.105209
Anacker, A. M., & Beery, A. K. (2013). Life in groups: The roles of oxytocin in mammalian sociality. Frontiers in Behavioral Neuroscience, 7, 185. https://doi.org/10.3389/fnbeh.2013.00185
Bystron, I., Blakemore, C., & Rakic, P. (2008). Development of the human cerebral cortex: Boulder Committee revisited. Nature Reviews Neuroscience, 9(2), 110–122. https://doi.org/10.1038/nrn2252
Boldrini, M., Fulmore, C. A., Tartt, A. N., Simeon, L. R., Pavlova, I., Poposka, V., Rosoklija, G. B., Stankov, A., Arango, V., Dwork, A. J., & Hen, R. (2018). Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell, 22(4), 589–599. https://doi.org/10.1016/j.stem.2018.03.015
Bourgeois, J. P., Goldman-Rakic, P. S., & Rakic, P. (1994). Synaptogenesis in the prefrontal cortex of rhesus monkeys. Cerebral Cortex, 4(1), 78–96. https://doi.org/10.1093/cercor/4.1.78
Clancy, B., Darlington, R. B., & Finlay, B. L. (2001). Translating developmental time across mammalian species. Neuroscience, 105(1), 7–17. https://doi.org/10.1016/S0306-4522(01)00171-3
Charvet, C. J., & Finlay, B. L. (2018). Comparing adult hippocampal neurogenesis across species: Translating time to predict the tempo in humans. Frontiers in Neuroscience, 12, 706. https://doi.org/10.3389/fnins.2018.00706
Cragg, B. G. (1972). The development of synapses in cat visual cortex. Investigative Ophthalmology, 11(5), 377–385.
Cragg, B. G. (1975). The development of synapses in the visual system of the cat. Journal of Comparative Neurology, 160(2), 147–166. https://doi.org/10.1002/cne.901600202
Kozareva, D. A., Cryan, J. F., & Nolan, Y. M. (2019). Born this way: Hippocampal neurogenesis across the lifespan. Aging Cell, 18(5), e13007. https://doi.org/10.1111/acel.13007
Insel, T. R., Wang, Z. X., & Ferris, C. F. (1994). Patterns of brain vasopressin receptor distribution associated with social organization in microtine rodents. Journal of Neuroscience, 14(9), 5381–5392. https://doi.org/10.1523/jneurosci.14-09-05381.1994
Insel, T. R., & Shapiro, L. E. (1992). Oxytocin receptor distribution reflects social organization in monogamous and polygamous voles. Proceedings of the National Academy of Sciences, 89(13), 5981–5985. https://doi.org/10.1073/pnas.89.13.5981
Mitchell, J. F., & Leopold, D. A. (2015). The marmoset monkey as a model for visual neuroscience. Neuroscience Research, 93, 20–46. https://doi.org/10.1016/j.neures.2015.01.008
Passingham, R. (2009). How good is the macaque monkey model of the human brain? Current Opinion in Neurobiology, 19(1), 6-11. https://doi.org/10.1016/j.conb.2009.01.002
Okano, H., Hikishima, K., Iriki, A., & Sasaki, E. (2012). The common marmoset as a novel animal model system for biomedical and neuroscience research applications. In Seminars in Fetal and Neonatal Medicine (Vol. 17, No. 6, pp. 336–340). WB Saunders.
Rakic, P. (2009). Evolution of the neocortex: A perspective from developmental biology. Nature Reviews Neuroscience, 10(10), 724–735. https://doi.org/10.1038/nrn2719
Rakic, P. (1974). Neurons in rhesus monkey visual cortex: Systematic relation between time of origin and eventual disposition. Science, 183(4123), 425–427. https://doi.org/10.1126/science.183.4123.425
Rakic, P. (2002). Pre- and post-developmental neurogenesis in primates. Clinical Neuroscience Research, 2(1–2), 29–39. https://doi.org/10.1016/S1566-2772(02)00005-1
Romero, T., Nagasawa, M., Mogi, K., Hasegawa, T., & Kikusui, T. (2014). Oxytocin promotes social bonding in dogs. Proceedings of the National Academy of Sciences, 111(25), 9085–9090. https://doi.org/10.1073/pnas.1322868111
Sadino, J. M., & Donaldson, Z. R. (2018). Prairie voles as a model for understanding the genetic and epigenetic regulation of attachment behaviors. ACS Chemical Neuroscience, 9(8), 1939–1950. https://doi.org/10.1021/acschemneuro.7b00475
Young, L. J., Nilsen, R., Waymire, K. G., MacGregor, G. R., & Insel, T. R. (1999). Increased affiliative response to vasopressin in mice expressing the V1a receptor from a monogamous vole. Nature, 400, 766–768. https://doi.org/10.1038/23475
Winslow, J. T., Hastings, N., Carter, C. S., Harbaugh, C. R., & Insel, T. R. (1993). A role for central vasopressin in pair bonding in monogamous prairie voles. Nature, 365, 545–548. https://doi.org/10.1038/365545a0
Walum, H., Westberg, L., Henningsson, S., Neiderhiser, J. M., Reiss, D., Igl, W., Ganiban, J. M., Spotts, E. L., Pedersen, N. L., Eriksson, E., & Lichtenstein, P. (2008). Genetic variation in the vasopressin receptor 1a gene (AVPR1A) associates with pair-bonding behavior in humans. Proceedings of the National Academy of Sciences, 105(37), 14153–14156. https://doi.org/10.1073/pnas.0803081105
4.6 How Can Brain Organoids Help Us Make Inferences about Brain Evolution?
Bakken, T. E., Jorstad, N. L., Hu, Q., et al. (2021). Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature, 598, 111–119. https://doi.org/10.1038/s41586-021-03465-8
Finotello, F., & Di Camillo, B. (2015). Measuring differential gene expression with RNA-seq: Challenges and strategies for data analysis. Briefings in Functional Genomics, 14(2), 130–142. https://doi.org/10.1093/bfgp/elu035
Khrameeva, E., Kurochkin, I., Han, D., et al. (2020). Single-cell-resolution transcriptome map of human, chimpanzee, bonobo, and macaque brains. Genome Research, 30(5), 776–789. https://doi.org/10.1101/gr.256958.119
Kanton, S., Boyle, M. J., He, Z., et al. (2019). Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature, 574, 418–422. https://doi.org/10.1038/s41586-019-1654-9
Kim, M. H., Radaelli, C., Thomsen, E. R., et al. (2023). Target cell-specific synaptic dynamics of excitatory to inhibitory neuron connections in supragranular layers of human neocortex. eLife, 12, e81863. https://doi.org/10.7554/eLife.81863
Ozsolak, F., & Milos, P. M. (2010). RNA sequencing: Advances, challenges and opportunities. Nature Reviews Genetics, 12(2), 87–98. https://doi.org/10.1038/nrg2934
Krienen, F. M., Goldman, M., Zhang, Q., et al. (2020). Innovations present in the primate interneuron repertoire. Nature, 586, 262–269. https://doi.org/10.1038/s41586-020-2781-z
Pollen, A. A., Bhaduri, A., Andrews, M. G., et al. (2019). Establishing cerebral organoids as models of human-specific brain evolution. Cell, 176(4), 743–756. https://doi.org/10.1016/j.cell.2019.01.017
Schörnig, M., Ju, X., Fast, L., et al. (2021). Comparison of induced neurons reveals slower structural and functional maturation in humans than in apes. eLife, 10, e59323. https://doi.org/10.7554/elife.59323
Van den Berge, K., Hembach, K. M., Soneson, C., Tiberi, S., Clement, L., Love, M. I., Patro, R., & Robinson, M. D. (2019). RNA sequencing data: Hitchhiker's guide to expression analysis. Annual Review of Biomedical Data Science, 2(1), 139–173. https://doi.org/10.1146/annurev-biodatasci-072018-021255