Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo

4.1 How Do We Choose A Model System?

Allen Shotwell, R. (2013). The revival of vivisection in the sixteenth century. Journal of the History of Biology, 46(2), 171–197. https://doi.org/10.1007/s10739-012-9326-8

Buffenstein, R., Park, T., Hanes, M., & Artwohl, J. E. (2012). Naked mole rat. In The laboratory rabbit, guinea pig, hamster, and other rodents (pp. 1055–1074). Academic Press.

Clancy, B., Darlington, R. B., & Finlay, B. L. (2001). Translating developmental time across mammalian species. Neuroscience, 105(1), 7–17. https://doi.org/10.1016/S0306-4522(01)00171-3

Daw, N. W. (2009). The foundations of development and deprivation in the visual system. Journal of Physiology, 587(12), 2769–2773. https://doi.org/10.1113/jphysiol.2009.170001

de Sousa, A. A., Rigby Dames, B. A., Graff, E. C., Mohamedelhassan, R., Vassilopoulos, T., & Charvet, C. J. (2023). Going beyond established model systems of Alzheimer's disease: Companion animals provide novel insights into the neurobiology of aging. Communications Biology, 6(1), 655. https://doi.org/10.1038/s42003-023-05034-3

Moss, C. F., & Sinha, S. R. (2003). Neurobiology of echolocation in bats. Current Opinion in Neurobiology, 13(6), 751–758. https://doi.org/10.1016/j.conb.2003.10.016

Prentice, E. D., Crouse, D. A., & Mann, M. D. (1992). Scientific merit review: The role of the IACUC. ILAR Journal, 34(1-2), 15–19. https://doi.org/10.1093/ilar.34.1-2.15

Quadrato, G., Brown, J., & Arlotta, P. (2016). The promises and challenges of human brain organoids as models of neuropsychiatric disease. Nature Medicine, 22(11), 1220–1228. https://doi.org/10.1038/nm.4214

Schwiening, C. J. (2012). A brief historical perspective: Hodgkin and Huxley. Journal of Physiology, 590(11), 2571–2575. https://doi.org/10.1113/jphysiol.2012.230458

Striedter, G. F. (2005). Principles of brain evolution. Sinauer Associates.

Striedter, G. F. (2016). Neurobiology: A functional approach. Oxford University Press.

4.2 How Do We Compare Brains?

Briscoe, S. D. (2019). Field homology: Still a meaningless concept. Brain, Behavior and Evolution, 93, 1–3. https://doi.org/10.1159/000500770

Butler, A. B. (1995). The dorsal thalamus of jawed vertebrates: A comparative viewpoint. Brain, Behavior and Evolution, 46(4–5), 209–223. https://doi.org/10.1159/000113275

Butler, A. B., & Saidel, W. M. (2000). Defining sameness: Historical, biological, and generative homology. BioEssays, 22(9), 846–853.

Butler, A. B., Reiner, A., & Karten, H. J. (2011). Evolution of the amniote pallium and the origins of mammalian neocortex. Annals of the New York Academy of Sciences, 1225(1), 14–27. https://doi.org/10.1111/j.1749-6632.2011.06006.x

de Sousa, A. A., Rigby Dames, B. A., Graff, E. C., Mohamedelhassan, R., Vassilopoulos, T., & Charvet, C. J. (2023). Going beyond established model systems of Alzheimer's disease: Companion animals provide novel insights into the neurobiology of aging. Communications Biology, 6, 655. https://doi.org/10.1038/s42003-023-05034-3

Karten, H. J. (1991). Homology and evolutionary origins of the “neocortex”. Brain, Behavior and Evolution, 38(4-5), 264–272. https://doi.org/10.1159/000114393

Medina, L., & Reiner, A. (2000). Do birds possess homologues of mammalian primary visual, somatosensory and motor cortices? Trends in Neurosciences, 23(1), 1–12. https://doi.org/10.1016/s0166-2236(99)01486-1

Puelles, L., Kuwana, E., Puelles, E., Bulfone, A., Shimamura, K., Keleher, J., Smiga, S., & Rubenstein, J. L. R. (2000). Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6 and Tbr-1. Journal of Comparative Neurology, 424(3), 409–438.

Striedter, G. F. (1997). The telencephalon of tetrapods in evolution. Brain, Behavior and Evolution, 49(4), 179–213. https://doi.org/10.1159/000112991

Striedter, G. F. (2005). Principles of brain evolution. Sinauer Associates.

4.3 How Do Brains Vary in Size?

Aboitiz, F. (1996). Does bigger mean better? Evolutionary determinants of brain size and structure. Brain, Behavior and Evolution, 47(5), 225–245. https://doi.org/10.1159/000113243

Barton, R. A., & Harvey, P. H. (2000). Mosaic evolution of brain structure in mammals. Nature, 405, 1055–1058. https://doi.org/10.1038/35016580

Bush, E. C., & Allman, J. M. (2004). The scaling of frontal cortex in primates and carnivores. Proceedings of the National Academy of Sciences, 101(11), 3962–3966. https://doi.org/10.1073/pnas.0305760101

Corbin, J. G., Nery, S., & Fishell, G. (2001). Telencephalic cells take a tangent: Non-radial migration in the mammalian forebrain. Nature Neuroscience, 4(11), 1177–1182. https://doi.org/10.1038/nn749

de Sousa, A. A., Beaudet, A., Calvey, T., Bardo, A., Benoit, J., Charvet, C. J., Dehay, C., Gómez-Robles, A., Gunz, P., Heuer, K., van den Heuvel, M. P., Hurst, S., Lauters, P., Reed, D., Salagnon, M., Sherwood, C. C., Ströckens, F., Tawane, M., Todorov, O. S., Toro, R., & Wei, Y. (2023). From fossils to mind. Communications Biology, 6, 636. https://doi.org/10.1038/s42003-023-04803-4

Dial, K. P., Greene, E., & Irschick, D. J. (2008). Allometry of behavior. Trends in Ecology & Evolution, 23(7), 394–401. https://doi.org/10.1016/j.tree.2008.03.005

Dooley, J. C., Donaldson, M. S., & Krubitzer, L. A. (2017). Cortical plasticity following stripe rearing in the marsupial Monodelphis domestica: Neural response properties of V1. Journal of Neurophysiology, 117(2), 566–581. https://doi.org/10.1152/jn.00431.2016

Dooley, J. C., & Krubitzer, L. A. (2019). Alterations in cortical and thalamic connections of somatosensory cortex following early loss of vision. Journal of Comparative Neurology, 527(10), 1675–1688. https://doi.org/10.1002/cne.24582

Finlay, B. L., & Darlington, R. B. (1995). Linked regularities in the development and evolution of mammalian brains. Science, 268(5217), 1578–1584. https://doi.org/10.1126/science.7777856

Finlay, B. L., Darlington, R. B., & Nicastro, N. (2001). Developmental structure in brain evolution. Brain, Behavior and Evolution, 24(2), 263–278.

Krubitzer, L. (1995). The organization of neocortex in mammals: Are species differences really so different? Trends in Neurosciences, 18(9), 408–417. https://doi.org/10.1016/0166-2236(95)93938-T

Krubitzer, L. A., & Prescott, T. J. (2018). The combinatorial creature: Cortical phenotypes within and across lifetimes. Trends in Neurosciences, 41, 744–762. https://doi.org/10.1016/j.tins.2018.08.002

Krubitzer, L., Manger, P., Pettigrew, J., & Calford, M. (1995). Organization of somatosensory cortex in monotremes: In search of the prototypical plan. Journal of Comparative Neurology, 351(2), 261–306. https://doi.org/10.1002/cne.903510206

Moreno, S., & Bidelman, G. M. (2014). Examining neural plasticity and cognitive benefit through the unique lens of musical training. Hearing Research, 308, 84–97. https://doi.org/10.1016/j.heares.2013.09.012

Ramamurthy, D. L., & Krubitzer, L. A. (2018). Neural coding of whisker-mediated touch in primary somatosensory cortex is altered following early blindness. Journal of Neuroscience, 38(27), 6172–6189. https://doi.org/10.1523/JNEUROSCI.0066-18.2018

Recanzone, G. H., Merzenich, M. M., Jenkins, W. M., Grajski, K. A., & Dinse, H. R. (1992). Topographic reorganization of the hand representation in cortical area 3b owl monkeys trained in a frequency-discrimination task. Journal of Neurophysiology, 67(5), 1031–1056. https://doi.org/10.1152/jn.1992.67.5.1031

Recanzone, G. H., Schreiner, C. E., & Merzenich, M. M. (1993). Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. Journal of Neuroscience, 13(1), 87–103. https://doi.org/10.1523/jneurosci.13-01-00087.1993

Reep, R. L., Finlay, B. L., & Darlington, R. B. (2007). The limbic system in mammalian brain evolution. Brain, Behavior and Evolution, 70(1), 57–70. https://doi.org/10.1159/000101491

Stephan, H., Frahm, H., & Baron, G. (1981). New and revised data on volumes of brain structures in insectivores and primates. Folia Primatologica, 35(1), 1–29. https://doi.org/10.1159/000155963

Strait, D. L., & Kraus, N. (2014). Biological impact of auditory expertise across the life span: Musicians as a model of auditory learning. Hearing Research, 308, 109–121. https://doi.org/10.1016/j.heares.2013.08.004

Yopak, K. E., Lisney, T. J., Darlington, R. B., Collin, S. P., Montgomery, J. C., & Finlay, B. L. (2010). A conserved pattern of brain scaling from sharks to primates. Proceedings of the National Academy of Sciences, 107(29), 12946–12951. https://doi.org/10.1073/pnas.1002195107

4.4 How Do Connections Differ Across Species?

Axer, M., & Amunts, K. (2022). Scale matters: The nested human connectome. Science, 378(6619), 500–504. https://doi.org/10.1126/science.abq2599

Charvet, C. J., Ofori, K., Baucum, C., Sun, J., Modrell, M. S., Hekmatyar, K., Edlow, B. L., & van der Kouwe, A. J. (2022). Tracing modification to cortical circuits in human and nonhuman primates from high-resolution tractography, transcription, and temporal dimensions. Journal of Neuroscience, 42(18), 3749–3767. https://doi.org/10.1523/JNEUROSCI.1506-21.2022

Lee, M. H., Smyser, C. D., & Shimony, J. S. (2013). Resting-state fMRI: A review of methods and clinical applications. American Journal of Neuroradiology, 34(10), 1866–1872. https://doi.org/10.3174/ajnr.A3263

Liao, X., Vasilakos, A. V., & He, Y. (2017). Small-world human brain networks: Perspectives and challenges. Neuroscience and Biobehavioral Reviews, 77, 286–300. https://doi.org/10.1016/j.neubiorev.2017.03.018

Liu, Z. Q., Zheng, Y. Q., & Misic, B. (2020). Network topology of the marmoset connectome. Network Neuroscience, 4(4), 1181–1196. https://doi.org/10.1162/netn_a_00159

Modha, D. S., & Singh, R. (2010). Network architecture of the long-distance pathways in the macaque brain. Proceedings of the National Academy of Sciences, 107(30), 13485–13490. https://doi.org/10.1073/pnas.1008054107

Murphy, K., Birn, R. M., & Bandettini, P. A. (2013). Resting-state fMRI confounds and cleanup. NeuroImage, 80, 349–359. https://doi.org/10.1016/j.neuroimage.2013.04.001

Rilling, J. K., Glasser, M. F., Preuss, T. M., Ma, X., Zhao, T., Hu, X., & Behrens, T. E. (2008). The evolution of the arcuate fasciculus revealed with comparative DTI. Nature Neuroscience, 11(4), 426–428. https://doi.org/10.1038/nn2072

Oh, S. W., Harris, J. A., Ng, L., Winslow, B., Cain, N., Mihalas, S., Wang, Q., Lau, C., Kuan, L., Henry, A. M., Mortrud, M. T., Ouellette, B., Nguyen, T. N., Sorensen, S. A., Slaughterbeck, C. R., Wakeman, W., Li, Y., Feng, D., Ho, A., Nicholas, E., Hirokawa, K. E., Bohn, P., Joines, K. M., Peng, H., Hawrylycz, M. J., Phillips, J. W., Hohmann, J. G., Wohnoutka, P., Gerfen, C. R., Koch, C., Bernard, A., Dang, C., Jones, A. R., & Zeng, H. (2014). A mesoscale connectome of the mouse brain. Nature, 508, 207–214. https://doi.org/10.1038/nature13186

Wedeen, V. J., Wang, R. P., Schmahmann, J. D., Benner, T., Tseng, W. Y. I., Dai, G., Pandya, D. N., Hagmann, P., D'Arceuil, H., & de Crespigny, A. J. (2008). Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. NeuroImage, 41(4), 1267–1277. https://doi.org/10.1016/j.neuroimage.2008.03.036

Wedeen, V. J., Hagmann, P., Tseng, W. Y. I., Reese, T. G., & Weisskoff, R. M. (2005). Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magnetic Resonance in Medicine, 54(6), 1377–1386. https://doi.org/10.1002/mrm.20642

4.5 How Can Diverse Species Help Us Make Inferences about Human Neurobiology?

Ahern, T. H., Olsen, S., Tudino, R., & Beery, A. K. (2021). Natural variation in the oxytocin receptor gene and rearing interact to influence reproductive and nonreproductive social behavior and receptor binding. Psychoneuroendocrinology, 128, 105209. https://doi.org/10.1016/j.psyneuen.2021.105209

Anacker, A. M., & Beery, A. K. (2013). Life in groups: The roles of oxytocin in mammalian sociality. Frontiers in Behavioral Neuroscience, 7, 185. https://doi.org/10.3389/fnbeh.2013.00185

Bystron, I., Blakemore, C., & Rakic, P. (2008). Development of the human cerebral cortex: Boulder Committee revisited. Nature Reviews Neuroscience, 9(2), 110–122. https://doi.org/10.1038/nrn2252

Boldrini, M., Fulmore, C. A., Tartt, A. N., Simeon, L. R., Pavlova, I., Poposka, V., Rosoklija, G. B., Stankov, A., Arango, V., Dwork, A. J., & Hen, R. (2018). Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell, 22(4), 589–599. https://doi.org/10.1016/j.stem.2018.03.015

Bourgeois, J. P., Goldman-Rakic, P. S., & Rakic, P. (1994). Synaptogenesis in the prefrontal cortex of rhesus monkeys. Cerebral Cortex, 4(1), 78–96. https://doi.org/10.1093/cercor/4.1.78

Clancy, B., Darlington, R. B., & Finlay, B. L. (2001). Translating developmental time across mammalian species. Neuroscience, 105(1), 7–17. https://doi.org/10.1016/S0306-4522(01)00171-3

Charvet, C. J., & Finlay, B. L. (2018). Comparing adult hippocampal neurogenesis across species: Translating time to predict the tempo in humans. Frontiers in Neuroscience, 12, 706. https://doi.org/10.3389/fnins.2018.00706

Cragg, B. G. (1972). The development of synapses in cat visual cortex. Investigative Ophthalmology, 11(5), 377–385.

Cragg, B. G. (1975). The development of synapses in the visual system of the cat. Journal of Comparative Neurology, 160(2), 147–166. https://doi.org/10.1002/cne.901600202

Kozareva, D. A., Cryan, J. F., & Nolan, Y. M. (2019). Born this way: Hippocampal neurogenesis across the lifespan. Aging Cell, 18(5), e13007. https://doi.org/10.1111/acel.13007

Insel, T. R., Wang, Z. X., & Ferris, C. F. (1994). Patterns of brain vasopressin receptor distribution associated with social organization in microtine rodents. Journal of Neuroscience, 14(9), 5381–5392. https://doi.org/10.1523/jneurosci.14-09-05381.1994

Insel, T. R., & Shapiro, L. E. (1992). Oxytocin receptor distribution reflects social organization in monogamous and polygamous voles. Proceedings of the National Academy of Sciences, 89(13), 5981–5985. https://doi.org/10.1073/pnas.89.13.5981

Mitchell, J. F., & Leopold, D. A. (2015). The marmoset monkey as a model for visual neuroscience. Neuroscience Research, 93, 20–46. https://doi.org/10.1016/j.neures.2015.01.008

Passingham, R. (2009). How good is the macaque monkey model of the human brain? Current Opinion in Neurobiology, 19(1), 6-11. https://doi.org/10.1016/j.conb.2009.01.002

Okano, H., Hikishima, K., Iriki, A., & Sasaki, E. (2012). The common marmoset as a novel animal model system for biomedical and neuroscience research applications. In Seminars in Fetal and Neonatal Medicine (Vol. 17, No. 6, pp. 336–340). WB Saunders.

Rakic, P. (2009). Evolution of the neocortex: A perspective from developmental biology. Nature Reviews Neuroscience, 10(10), 724–735. https://doi.org/10.1038/nrn2719

Rakic, P. (1974). Neurons in rhesus monkey visual cortex: Systematic relation between time of origin and eventual disposition. Science, 183(4123), 425–427. https://doi.org/10.1126/science.183.4123.425

Rakic, P. (2002). Pre- and post-developmental neurogenesis in primates. Clinical Neuroscience Research, 2(1–2), 29–39. https://doi.org/10.1016/S1566-2772(02)00005-1

Romero, T., Nagasawa, M., Mogi, K., Hasegawa, T., & Kikusui, T. (2014). Oxytocin promotes social bonding in dogs. Proceedings of the National Academy of Sciences, 111(25), 9085–9090. https://doi.org/10.1073/pnas.1322868111

Sadino, J. M., & Donaldson, Z. R. (2018). Prairie voles as a model for understanding the genetic and epigenetic regulation of attachment behaviors. ACS Chemical Neuroscience, 9(8), 1939–1950. https://doi.org/10.1021/acschemneuro.7b00475

Young, L. J., Nilsen, R., Waymire, K. G., MacGregor, G. R., & Insel, T. R. (1999). Increased affiliative response to vasopressin in mice expressing the V1a receptor from a monogamous vole. Nature, 400, 766–768. https://doi.org/10.1038/23475

Winslow, J. T., Hastings, N., Carter, C. S., Harbaugh, C. R., & Insel, T. R. (1993). A role for central vasopressin in pair bonding in monogamous prairie voles. Nature, 365, 545–548. https://doi.org/10.1038/365545a0

Walum, H., Westberg, L., Henningsson, S., Neiderhiser, J. M., Reiss, D., Igl, W., Ganiban, J. M., Spotts, E. L., Pedersen, N. L., Eriksson, E., & Lichtenstein, P. (2008). Genetic variation in the vasopressin receptor 1a gene (AVPR1A) associates with pair-bonding behavior in humans. Proceedings of the National Academy of Sciences, 105(37), 14153–14156. https://doi.org/10.1073/pnas.0803081105

4.6 How Can Brain Organoids Help Us Make Inferences about Brain Evolution?

Bakken, T. E., Jorstad, N. L., Hu, Q., et al. (2021). Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature, 598, 111–119. https://doi.org/10.1038/s41586-021-03465-8

Finotello, F., & Di Camillo, B. (2015). Measuring differential gene expression with RNA-seq: Challenges and strategies for data analysis. Briefings in Functional Genomics, 14(2), 130–142. https://doi.org/10.1093/bfgp/elu035

Khrameeva, E., Kurochkin, I., Han, D., et al. (2020). Single-cell-resolution transcriptome map of human, chimpanzee, bonobo, and macaque brains. Genome Research, 30(5), 776–789. https://doi.org/10.1101/gr.256958.119

Kanton, S., Boyle, M. J., He, Z., et al. (2019). Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature, 574, 418–422. https://doi.org/10.1038/s41586-019-1654-9

Kim, M. H., Radaelli, C., Thomsen, E. R., et al. (2023). Target cell-specific synaptic dynamics of excitatory to inhibitory neuron connections in supragranular layers of human neocortex. eLife, 12, e81863. https://doi.org/10.7554/eLife.81863

Ozsolak, F., & Milos, P. M. (2010). RNA sequencing: Advances, challenges and opportunities. Nature Reviews Genetics, 12(2), 87–98. https://doi.org/10.1038/nrg2934

Krienen, F. M., Goldman, M., Zhang, Q., et al. (2020). Innovations present in the primate interneuron repertoire. Nature, 586, 262–269. https://doi.org/10.1038/s41586-020-2781-z

Pollen, A. A., Bhaduri, A., Andrews, M. G., et al. (2019). Establishing cerebral organoids as models of human-specific brain evolution. Cell, 176(4), 743–756. https://doi.org/10.1016/j.cell.2019.01.017

Schörnig, M., Ju, X., Fast, L., et al. (2021). Comparison of induced neurons reveals slower structural and functional maturation in humans than in apes. eLife, 10, e59323. https://doi.org/10.7554/elife.59323

Van den Berge, K., Hembach, K. M., Soneson, C., Tiberi, S., Clement, L., Love, M. I., Patro, R., & Robinson, M. D. (2019). RNA sequencing data: Hitchhiker's guide to expression analysis. Annual Review of Biomedical Data Science, 2(1), 139–173. https://doi.org/10.1146/annurev-biodatasci-072018-021255

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution-NonCommercial-ShareAlike License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/introduction-behavioral-neuroscience/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/introduction-behavioral-neuroscience/pages/1-introduction
Citation information

© Nov 20, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.