Check Your Understanding
a. ; inserting the angle and noting that for a hollow cylinder we have we are given a value of 0.6 for the coefficient of static friction, which is less than 0.87, so the condition isn’t satisfied and the hollow cylinder will slip; b. The solid cylinder obeys the condition The value of 0.6 for satisfies this condition, so the solid cylinder will not slip.
From the figure, we see that the cross product of the radius vector with the momentum vector gives a vector directed out of the page. Inserting the radius and momentum into the expression for the angular momentum, we have
; Taking the ratio of the angular momenta, we have:
. Thus, the cylinder has more angular momentum. This is because the cylinder has more mass distributed farther from the axis of rotation.
The Moon’s gravity is 1/6 that of Earth’s. By examining Equation 11.12, we see that the top’s precession frequency is linearly proportional to the acceleration of gravity. All other quantities, mass, moment of inertia, and spin rate are the same on the Moon. Thus, the precession frequency on the Moon is
Conceptual Questions
The wheel is more likely to slip on a steep incline since the coefficient of static friction must increase with the angle to keep rolling motion without slipping.
The cylinder reaches a greater height. By Equation 11.4, its acceleration in the direction down the incline would be less.
All points on the straight line will give zero angular momentum, because a vector crossed into a parallel vector is zero.
Without the small propeller, the body of the helicopter would rotate in the opposite sense to the large propeller in order to conserve angular momentum. The small propeller exerts a thrust at a distance R from the center of mass of the aircraft to prevent this from happening.
More mass is concentrated near the rotational axis, which decreases the moment of inertia causing the star to increase its angular velocity.
A torque is needed in the direction perpendicular to the angular momentum vector in order to change its direction. These forces on the space vehicle are external to the container in which the gyroscope is mounted and do not impart torques to the gyroscope’s rotating disk.
Problems
Mechanical energy at the bottom equals mechanical energy at the top;
,
so the distance up the incline is .
Use energy conservation
,
.
Subtracting the two equations, eliminating the initial translational energy, we have
,
,
Therefore the difference in height is
Thus, the hollow sphere, with the smaller moment of inertia, rolls up to a lower height of
The magnitude of the cross product of the radius to the bird and its momentum vector yields , which gives as the altitude of the bird h. The direction of the angular momentum is perpendicular to the radius and momentum vectors, which we choose arbitrarily as , which is in the plane of the ground:
a. ; b. No, the angular momentum stays the same since the cross-product involves only the perpendicular distance from the plane to the ground no matter where it is along its path.
a. ,
,
b. ;
c. back to the original value;
d. back to the original value;
e. work of the bug crawling on the disk
a. ,
;
b. ;
c. The two forces at the equator would have the same magnitude but different directions, one in the north direction and the other in the south direction on the opposite side of Earth. The angle between the forces and the lever arms to the center of Earth is , so a given torque would have magnitude . Both would provide a torque in the same direction:
Additional Problems
,
b. ;
The hollow sphere has a larger moment of inertia, and therefore is harder to bring to a rest than the marble, or solid sphere. The distance travelled is larger and the time elapsed is longer.
a. ;
b. ,
,
;
The moment of inertia is less for the hollow sphere, therefore less work is required to stop it. Likewise it rolls up the incline a shorter distance than the hoop.
a. average distance to the Moon; orbital period ; speed of the Moon ; mass of the Moon ,
;
b. radius of the Moon ; the orbital period is the same as (a): ,
;
The orbital angular momentum is times larger than the rotational angular momentum for the Moon.
In the conservation of angular momentum equation, the rotation rate appears on both sides so we keep the (rev/min) notation as the angular velocity can be multiplied by a constant to get (rev/min):
Challenge Problems
Assume the roll accelerates forward with respect to the ground with an acceleration . Then it accelerates backwards relative to the truck with an acceleration .
Also, ,
,
Solving for : ; ,
therefore,
a. The tension in the string provides the centripetal force such that . The component of the tension that is vertical opposes the gravitational force such that . This gives . We solve for . This gives the length of the string as .
At , there is a new angle, tension, and perpendicular radius to the rod. Dividing the two equations involving the tension to eliminate it, we have ;
; b. ,
; c. No, the cosine of the angle is inversely proportional to the square of the angular velocity, therefore in order for . The rod would have to spin infinitely fast.