Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Physics

Section Summary

PhysicsSection Summary

5.1 Vector Addition and Subtraction: Graphical Methods

  • The graphical method of adding vectors A A and B B involves drawing vectors on a graph and adding them by using the head-to-tail method. The resultant vector R R is defined such that A + B = R. The magnitude and direction of R R are then determined with a ruler and protractor.
  • The graphical method of subtracting vectors A and B involves adding the opposite of vector B, which is defined as −B. In this case, A  B = A + (B) = R. A  B = A + (B) = R. Next, use the head-to-tail method as for vector addition to obtain the resultant vector R R .
  • Addition of vectors is independent of the order in which they are added; A + B = B + A.
  • The head-to-tail method of adding vectors involves drawing the first vector on a graph and then placing the tail of each subsequent vector at the head of the previous vector. The resultant vector is then drawn from the tail of the first vector to the head of the final vector.
  • Variables in physics problems, such as force or velocity, can be represented with vectors by making the length of the vector proportional to the magnitude of the force or velocity.
  • Problems involving displacement, force, or velocity may be solved graphically by measuring the resultant vector’s magnitude with a ruler and measuring the direction with a protractor.

5.2 Vector Addition and Subtraction: Analytical Methods

  • The analytical method of vector addition and subtraction uses the Pythagorean theorem and trigonometric identities to determine the magnitude and direction of a resultant vector.
  • The steps to add vectors A A and B B using the analytical method are as follows:
    1. Determine the coordinate system for the vectors. Then, determine the horizontal and vertical components of each vector using the equations
      A x = Acosθ B x = Bcosθ A x = Acosθ B x = Bcosθ

      and

      A y = Asinθ B y = Bsinθ . A y = Asinθ B y = Bsinθ .
    2. Add the horizontal and vertical components of each vector to determine the components R x R x and R y R y of the resultant vector, R. R.
      R x = A x + B x R x = A x + B x

      and

      R y = A y + B y . R y = A y + B y .
    3. Use the Pythagorean theorem to determine the magnitude, R R , of the resultant vector R. R.
      R= R x 2 + R y 2 R= R x 2 + R y 2
    4. Use a trigonometric identity to determine the direction, θ θ , of R. R.
      θ= tan 1 ( R y / R x ) θ= tan 1 ( R y / R x )

5.3 Projectile Motion

  • Projectile motion is the motion of an object through the air that is subject only to the acceleration of gravity.
  • Projectile motion in the horizontal and vertical directions are independent of one another.
  • The maximum height of an projectile is the highest altitude, or maximum displacement in the vertical position reached in the path of a projectile.
  • The range is the maximum horizontal distance traveled by a projectile.
  • To solve projectile problems: choose a coordinate system; analyze the motion in the vertical and horizontal direction separately; then, recombine the horizontal and vertical components using vector addition equations.

5.4 Inclined Planes

  • Friction is a contact force between systems that opposes the motion or attempted motion between them. Simple friction is proportional to the normal force N pushing the systems together. A normal force is always perpendicular to the contact surface between systems. Friction depends on both of the materials involved.
  • µs is the coefficient of static friction, which depends on both of the materials.
  • µk is the coefficient of kinetic friction, which also depends on both materials.
  • When objects rest on an inclined plane that makes an angle θ θ with the horizontal surface, the weight of the object can be broken into components that act perpendicular ( w ) ( w ) and parallel ( w || w || ) to the surface of the plane.

5.5 Simple Harmonic Motion

  • An oscillation is a back and forth motion of an object between two points of deformation.
  • An oscillation may create a wave, which is a disturbance that propagates from where it was created.
  • The simplest type of oscillations are related to systems that can be described by Hooke’s law.
  • Periodic motion is a repetitious oscillation.
  • The time for one oscillation is the period T.
  • The number of oscillations per unit time is the frequency
  • A mass m suspended by a wire of length L is a simple pendulum and undergoes simple harmonic motion for amplitudes less than about 15 degrees.
Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute Texas Education Agency (TEA). The original material is available at: https://www.texasgateway.org/book/tea-physics . Changes were made to the original material, including updates to art, structure, and other content updates.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/physics/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/physics/pages/1-introduction
Citation information

© Jan 19, 2024 Texas Education Agency (TEA). The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.