Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Organic Chemistry

Why This Chapter?

Organic ChemistryWhy This Chapter?

A photo shows fresh, ripe tomatoes.
Figure 7.1 Tomatoes are good for you. Their red color is due to lycopene, which has 13 double bonds. (credit: modification of work “Tomatoes” by Jeremy Keith/Flickr, CC BY 2.0)

7 • Why This Chapter?

Carbon–carbon double bonds are present in most organic and biological molecules, so a good understanding of their behavior is needed. In this chapter, we’ll look at some consequences of alkene stereoisomerism and then focus on the broadest and most general class of alkene reactions, the electrophilic addition reaction. Carbon-carbon triple bonds, by contrast, occur much less commonly, so we’ll not spend much time on their chemistry.

An alkene, sometimes called an olefin from the German term for oil forming, is a hydrocarbon that contains a carbon–carbon double bond, while an alkyne is a hydrocarbon that contains a carbon-carbon triple bond. Alkenes occur abundantly in nature. Ethylene, for instance, is a plant hormone that induces ripening in fruit, and α-pinene is the major component of turpentine. Lycopene, found in fruits such as watermelon and papaya as well as tomatoes, is an antioxidant with numerous health benefits such as sun protection and cardiovascular protection.

The structures of ethylene, alpha-pinene, and lycopene (a conjugated polyene). Double bonds are highlighted in red.
Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution-NonCommercial-ShareAlike License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/organic-chemistry/pages/1-why-this-chapter
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/organic-chemistry/pages/1-why-this-chapter
Citation information

© Jan 9, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.