23.10 • Conjugate Carbonyl Additions: The Michael Reaction
We saw in Section 19.13 that certain nucleophiles, such as amines, react with α,β-unsaturated aldehydes and ketones to give a conjugate addition product, rather than a direct addition product.
Exactly the same kind of conjugate addition can occur when a nucleophilic enolate ion reacts with an α,β-unsaturated carbonyl compound—a process known as the Michael reaction after Arthur Michael at Tufts College and Harvard University.
The best Michael reactions are those that take place when a particularly stable enolate ion, such as that derived from a β-keto ester or other 1,3-dicarbonyl compound, adds to an unhindered α,β-unsaturated ketone. For example, ethyl acetoacetate reacts with 3-buten-2-one in the presence of sodium ethoxide to yield the conjugate addition product.
Michael reactions take place by addition of a nucleophilic enolate ion donor to the β carbon of an α,β-unsaturated carbonyl acceptor, according to the mechanism shown in Figure 23.7.
The Michael reaction occurs with a variety of α,β-unsaturated carbonyl compounds, not just conjugated ketones. Unsaturated aldehydes, esters, thioesters, nitriles, amides, and nitro compounds can all act as the electrophilic acceptor component in Michael reactions (Table 23.1). Similarly, a variety of different donors can be used, including β-diketones, β-keto esters, malonic esters, β-keto nitriles, and nitro compounds.
Michael acceptors | Michael donors | ||
---|---|---|---|
Propenal | β-Diketone | ||
3-Buten-2-one | β-Keto ester | ||
Ethyl propenoate | Diethyl malonate | ||
Propenamide | β-Keto nitrile | ||
Propenenitrile | Nitro compound | ||
Nitroethylene |
Worked Example 23.5
Using the Michael Reaction
How might you obtain the following compound using a Michael reaction?