Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Organic Chemistry

Why This Chapter?

Organic ChemistryWhy This Chapter?

A photo of red, green, and black chilies arranged in heaps.
Figure 20.1 The burning sensation produced by touching or eating chili peppers is due to capsaicin, a carboxylic acid derivative called an amide. (credit: modification of “Chillis” by Lucas Cobb/Flickr, CC BY 2.0)

20 • Why This Chapter?

Carboxylic acids are present in many industrial processes and most biological pathways and are the starting materials from which other acyl derivatives are made. Thus, an understanding of their properties and reactions is fundamental to understanding organic chemistry. We’ll look both at acids and at their close relatives, nitriles (RC≡NRC≡N), in this chapter and at carboxylic acid derivatives in the next chapter.

Carboxylic acids, RCO2H, occupy a central place among carbonyl compounds. Not only are they valuable in themselves, they also serve as starting materials for preparing numerous carboxylic acid derivatives such as acid chlorides, esters, amides, and thioesters. In addition, carboxylic acids are present in the majority of biological pathways.

A set of carboxylic acid derivatives, with arrows from a generic carboxylic acid pointing toward each of acid chloride, ester, amide, and thioester.

A great many carboxylic acids are found in nature: acetic acid, CH3CO2H, is the chief organic component of vinegar; butanoic acid, CH3CH2CH2CO2H, is responsible for the rancid odor of sour butter; and hexanoic acid (caproic acid), CH3(CH2)4CO2H, is responsible for the unmistakable aroma of goats and dirty gym socks (the name comes from the Latin caper, meaning “goat”). Other examples are cholic acid, a major component of human bile, and long-chain aliphatic acids such as palmitic acid, CH3(CH2)14CO2H, a biological precursor of fats and vegetable oils.

The structure and ball-and-stick model of cholic acid. The gray, black, and red spheres represent hydrogen, carbon, and oxygen atoms, respectively.

Approximately 20 million tons of acetic acid is produced worldwide each year for a variety of purposes, including preparation of the vinyl acetate polymer used in paints and adhesives. About 20% of the acetic acid synthesized industrially is obtained by oxidation of acetaldehyde. Much of the remaining 80% is prepared by the rhodium-catalyzed reaction of methanol with carbon monoxide.

The reaction of methanol with carbon monoxide in presence of rhodium catalyst to form acetic acid.
Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution-NonCommercial-ShareAlike License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/organic-chemistry/pages/1-why-this-chapter
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/organic-chemistry/pages/1-why-this-chapter
Citation information

© Aug 5, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.