Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo

10.1 The Physiological Actions Implementing Movement – Contraction of Muscles

Anders, S., Kunz, M., Gehl, A., Sehner, S., Raupach, T., & Beck-Bornholdt, H. P. (2013). Estimation of the time since death--reconsidering the re-establishment of rigor mortis. International Journal of Legal Medicine, 127(1), 127–130. https://doi.org/10.1007/s00414-011-0632-z

Gordon, T. (2020). Peripheral nerve regeneration and muscle reinnervation. International Journal of Molecular Sciences, 21(22), 8652. https://doi.org/10.3390/ijms21228652

Minetto, M. A., Holobar, A., Botter, A., & Farina, D. (2013). Origin and development of muscle cramps. Exercise and Sport Sciences Reviews, 41(1), 3–10. https://doi.org/10.1097/JES.0b013e3182724817

Mukund, K., & Subramaniam, S. (2020). Skeletal muscle: A review of molecular structure and function, in health and disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 12(1), e1462. https://doi.org/10.1002/wsbm.1462

Pette, D., & Staron, R. S. (2000). Myosin isoforms, muscle fiber types, and transitions. Microscopy Research and Technique, 50(6), 500–509. https://doi.org/10.1002/1097-0029(20000915)50:6<500::AID-JEMT7>3.0.CO;2-7

Scott, W., Stevens, J., & Binder-Macleod, S. A. (2001). Human skeletal muscle fiber type classifications. Physical Therapy, 81(11), 1810–1816.

Van Cutsem, M., Duchateau, J., & Hainaut, K. (1998). Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans. The Journal of Physiology, 513(Pt 1), 295–305. https://doi.org/10.1111/j.1469-7793.1998.295by.x

10.2 Eliciting Contractions from Lower Levels – Lower Motoneurons and Reflex Arcs

Aach, M., Cruciger, O., Sczesny-Kaiser, M., Höffken, O., Meindl, R. C., Tegenthoff, M., Schwenkreis, P., Sankai, Y., & Schildhauer, T. A. (2014). Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: A pilot study. The Spine Journal: Official Journal of the North American Spine Society, 14(12), 2847–2853. https://doi.org/10.1016/j.spinee.2014.03.042

Adams, M. M., & Hicks, A. L. (2005). Spasticity after spinal cord injury. Spinal Cord, 43(10), 577–586. https://doi.org/10.1038/sj.sc.3101757

Ahmed, Z. (2016). Modulation of gamma and alpha spinal motor neurons activity by trans-spinal direct current stimulation: Effects on reflexive actions and locomotor activity. Physiological Reports, 4(3), e12696. https://doi.org/10.14814/phy2.12696

Collins, J. J., & Richmond, S. A. (1994). Hard-wired central pattern generators for quadrupedal locomotion. Biological Cybernetics, 71(5), 375–385. https://doi.org/10.1007/BF00198915

Côté, M. P., Ménard, A., & Gossard, J. P. (2003). Spinal cats on the treadmill: Changes in load pathways. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 23(7), 2789–2796. https://doi.org/10.1523/JNEUROSCI.23-07-02789.2003

Dimitrijevic, M. R., Gerasimenko, Y., & Pinter, M. M. (1998). Evidence for a spinal central pattern generator in humans. Annals of the New York Academy of Sciences, 860, 360–376. https://doi.org/10.1111/j.1749-6632.1998.tb09062.x

Frigon, A., & Rossignol, S. (2008). Locomotor and reflex adaptation after partial denervation of ankle extensors in chronic spinal cats. Journal of Neurophysiology, 100(3), 1513–1522. https://doi.org/10.1152/jn.90321.2008

Gilman, S. (2002). Joint position sense and vibration sense: Anatomical organisation and assessment. Journal of Neurology, Neurosurgery, and Psychiatry, 73(5), 473–477. https://doi.org/10.1136/jnnp.73.5.473

Hunt, C. C. (1990). Mammalian muscle spindle: Peripheral mechanisms. Physiological Reviews, 70(3), 643–663. https://doi.org/10.1152/physrev.1990.70.3.643

Klarner, T., & Zehr, E. P. (2018). Sherlock Holmes and the curious case of the human locomotor central pattern generator. Journal of Neurophysiology, 120(1), 53–77. https://doi.org/10.1152/jn.00554.2017

Lephart, S. M., & Jari, R. (2002). The role of proprioception in shoulder instability. Operative Techniques in Sports Medicine, 10(1), 2–4. https://doi.org/10.1053/otsm.2002.29169

Lephart, S. M., Swanik, C. B., & Boonriong, T. (1998). Anatomy and physiology of proprioception and neuromuscular control. International Journal of Athletic Therapy and Training, 3(5), 6–9. https://doi.org/10.1123/att.3.5.6

Michel-Titus, A., Revest, P., & Shortland, P. (2010). Motor systems I: Descending pathways and cerebellum. Chapter 9 In: The nervous system (Second Edition). Maryland Heights, MO: Elsevier, Science Direct. https://doi.org/10.1016/B978-0-7020-3373-5.00009-5

Minassian, K., Hofstoetter, U. S., Dzeladini, F., Guertin, P. A., & Ijspeert, A. (2017). The human central pattern generator for locomotion: Does it exist and contribute to walking?. The Neuroscientist: A Review Journal Bringing Neurobiology, Neurology and Psychiatry, 23(6), 649–663. https://doi.org/10.1177/1073858417699790

Nudo, R. J., & Masterton, R. B. (1990). Descending pathways to the spinal cord, III: Sites of origin of the corticospinal tract. The Journal of Comparative Neurology, 296(4), 559–583. https://doi.org/10.1002/cne.902960405

Patestas, M. A., & Gartner, L. P. (2016). A textbook of neuroanatomy (Second Edition). New Jersey: John Wiley and Sons.

Proske, U. (1997). The mammalian muscle spindle. Physiology, 12(1), 37–42. https://doi.org/10.1152/physiologyonline.1997.12.1.37

Sacks, O. (1987). The disembodied lady. Chapter 3 in: The man who mistook his wife for a hat and other clinical tales. New York: Harper and Row Publishers.

Serrao, M., Spaich, E. G., & Andersen, O. K. (2012). Modulating effects of bodyweight unloading on the lower limb nociceptive withdrawal reflex during symmetrical stance. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 123(5), 1035–1043. https://doi.org/10.1016/j.clinph.2011.09.006

Stuart, D. G., Mosher, C. G., Gerlach, R. I., & Reinking, R. M. (1972). Mechanical arrangement and transducing properties of Golgi tendon organs. Experimental Brain Research, 14(3), 274–292. https://doi.org/10.1007/BF00816163

Termsarasab, P., Thammongkolchai, T., & Frucht, S. J. (2015). Spinal-generated movement disorders: A clinical review. Journal of Clinical Movement Disorders, 2, 18. https://doi.org/10.1186/s40734-015-0028-1

Thompson, A. K., Pomerantz, F. R., & Wolpaw, J. R. (2013). Operant conditioning of a spinal reflex can improve locomotion after spinal cord injury in humans. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33(6), 2365–2375. https://doi.org/10.1523/JNEUROSCI.3968-12.2013

Towe, A. L. (1973). Somatosensory cortex: Descending influences on ascending systems. In: Iggo, A. (Ed.), Somatosensory system. Handbook of Sensory Physiology, Vol 2. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-65438-1_18

Zimny, M. L., DePaolo, C., & Dabezies, E. (1989). Mechano-receptors in the flexor tendons of the hand. Journal of Hand Surgery (Edinburgh, Scotland), 14(2), 229–231. https://doi.org/10.1016/0266-7681(89)90134-4

10.3 Our Brain Gets Involved – Responsibilities of Upper Motor Systems

Albin, R. L., & Leventhal, D. K. (2017). The missing, the short, and the long: Levodopa responses and dopamine actions. Annals of Neurology, 82(1), 4–19. https://doi.org/10.1002/ana.24961

Albin, R. L., & Mink, J. W. (2006). Recent advances in Tourette syndrome research. Trends in Neurosciences, 29(3), 175–182. https://doi.org/10.1016/j.tins.2006.01.001

Bares, M., Lungu, O. V., Husárová, I., & Gescheidt, T. (2010). Predictive motor timing performance dissociates between early diseases of the cerebellum and Parkinson's disease. Cerebellum (London, England), 9(1), 124–135. https://doi.org/10.1007/s12311-009-0133-5

Bonelli, R. M., & Wenning, G. K. (2006). Pharmacological management of Huntington's disease: An evidence-based review. Current Pharmaceutical Design, 12(21), 2701–2720. https://doi.org/10.2174/138161206777698693

Brunamonti, E., Chiricozzi, F. R., Clausi, S., Olivito, G., Giusti, M. A., Molinari, M., Ferraina, S., & Leggio, M. (2014). Cerebellar damage impairs executive control and monitoring of movement generation. PLOS ONE, 9(1), e85997. https://doi.org/10.1371/journal.pone.0085997

Collinger, J. L., Wodlinger, B., Downey, J. E., Wang, W., Tyler-Kabara, E. C., Weber, D. J., McMorland, A. J., Velliste, M., Boninger, M. L., & Schwartz, A. B. (2013). High-performance neuroprosthetic control by an individual with tetraplegia. Lancet (London, England), 381(9866), 557–564. https://doi.org/10.1016/S0140-6736(12)61816-9

Chirchiglia, D., Chirchiglia, P., Marotta, R., Pugliese, D., Guzzi, G., & Serena, L. (2019). The dorsolateral prefrontal cortex, the apathetic syndrome, and free will. Activitas Nervosa Superior, 61, 136–141. https://doi.org/10.1007/s41470-019-00057-w

Dahms, C., Brodoehl, S., Witte, O. W., & Klingner, C. M. (2020). The importance of different learning stages for motor sequence learning after stroke. Human Brain Mapping, 41(1), 270–286. https://doi.org/10.1002/hbm.24793

Decety, J., & Ingvar, D. H. (1990). Brain structures participating in mental simulation of motor behavior: A neuropsychological interpretation. Acta Psychologica, 73(1), 13–34. https://doi.org/10.1016/0001-6918(90)90056-l

Downey, J. E., Weiss, J. M., Muelling, K., Venkatraman, A., Valois, J. S., Hebert, M., Bagnell, J. A., Schwartz, A. B., & Collinger, J. L. (2016). Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping. Journal of Neuroengineering and Rehabilitation, 13, 28. https://doi.org/10.1186/s12984-016-0134-9

Ekman, F. K., Ojala, D. S., Adil, M. M., Lopez, P. A., Schaffer, D. V., & Gaj, T. (2019). CRISPR-Cas9-mediated genome editing increases lifespan and improves motor deficits in a Huntington's disease mouse model. Molecular Therapy. Nucleic Acids, 17, 829–839. https://doi.org/10.1016/j.omtn.2019.07.009

Fahn, S. (2008). The history of dopamine and levodopa in the treatment of Parkinson's disease. Movement Disorders: Official Journal of the Movement Disorder Society, 23(Suppl 3), S497–S508. https://doi.org/10.1002/mds.22028

Freed, C. R., Zhou, W., & Breeze, R. E. (2011). Dopamine cell transplantation for Parkinson's disease: The importance of controlled clinical trials. Neurotherapeutics: The Journal of the American Society for Experimental NeuroTherapeutics, 8(4), 549–561. https://doi.org/10.1007/s13311-011-0082-9

Fujisawa, Y., & Okajima, Y. (2015). Characteristics of handwriting of people with cerebellar ataxia: Three-dimensional movement analysis of the pen tip, finger, and wrist. Physical Therapy, 95(11), 1547–1558. https://doi.org/10.2522/ptj.20140118

Georgopoulos, A. P., Caminiti, R., Kalaska, J. F., & Massey, J. T. (1983). Spatial coding of movement: A hypothesis concerning the coding of movement direction by motor cortical populations. Experimental Brain Research, 49(Suppl. 7), 327–336. https://doi.org/10.1007/978-3-642-68915-4_34

Georgopoulos, A. P., Kalaska, J. F., Caminiti, R., & Massey, J. T. (1982). On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 2(11), 1527–1537. https://doi.org/10.1523/JNEUROSCI.02-11-01527.1982

Georgopoulos, A. P., Kettner, R. E., & Schwartz, A. B. (1988). Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 8(8), 2928–2937. https://doi.org/10.1523/JNEUROSCI.08-08-02928.1988

Georgopoulos, A. P., Ashe, J., Smyrnis, N., & Taira, M. (1992). The motor cortex and the coding of force. Science (New York, N.Y.), 256(5064), 1692–1695. https://doi.org/10.1126/science.256.5064.1692

Geyer, S., Matelli, M., Luppino, G., & Zilles, K. (2000). Functional neuroanatomy of the primate isocortical motor system. Anatomy and Embryology, 202(6), 443–474. https://doi.org/10.1007/s004290000127

Graybiel, A. M. (1995). The basal ganglia. Trends in Neurosciences, 18(2), 60–62.

Graybiel, A. M. (1998). The basal ganglia and chunking of action repertoires. Neurobiology of Learning and Memory, 70(1-2), 119–136. https://doi.org/10.1006/nlme.1998.3843

Graybiel, A. M., & Mink, J. W. (2009). The basal ganglia and cognition. In Gazzaniga, M. S., Bizzi, E., Chalupa, L. M., Grafton, S. T., Heatherton, T. F., Koch, C., LeDoux, J. E., Luck, S. J., Mangan, G. R., Movshon, J. A., Neville, H., Phelps, E. A., Rakic, P., Schacter, D. L., Sur, M., Wandell, B. A. (Eds.), The cognitive neurosciences (pp. 565-585). Boston: MIT Press.

Groenewegen, H. J. (2003). The basal ganglia and motor control. Neural Plasticity, 10(1-2), 107–120. https://doi.org/10.1155/NP.2003.107

Heemskerk, A. W., & Roos, R. A. (2011). Dysphagia in Huntington's disease: A review. Dysphagia, 26(1), 62–66. https://doi.org/10.1007/s00455-010-9302-4

Jackson, P. L., Lafleur, M. F., Malouin, F., Richards, C. L., & Doyon, J. (2003). Functional cerebral reorganization following motor sequence learning through mental practice with motor imagery. NeuroImage, 20(2), 1171–1180. https://doi.org/10.1016/S1053-8119(03)00369-0

Joel, D. (2001). Open interconnected model of basal ganglia-thalamocortical circuitry and its relevance to the clinical syndrome of Huntington's disease. Movement Disorders: Official Journal of the Movement Disorder Society, 16(3), 407–423. https://doi.org/10.1002/mds.1096

Kennedy, S. D., & Schwartz, A. B. (2019). Distributed processing of movement signaling. Proceedings of the National Academy of Sciences of the United States of America, 116(52), 26266–26273. https://doi.org/10.1073/pnas.1902296116

Malloy, P., Bihrle, A., Duffy, J., & Cimino, C. (1993). The orbitomedial frontal syndrome. Archives of Clinical Neuropsychology: The Official Journal of the National Academy of Neuropsychologists, 8(3), 185–201.

Milner, B., & Petrides, M. (1984). Behavioral effects of frontal-lobe lesions in man. Trends in Neurosciences, 7(11), 403–407.

Mink, J. W. (2018). Basal ganglia mechanisms in action selection, plasticity, and dystonia. European Journal of Paediatric Neurology: EJPN: Official Journal of the European Paediatric Neurology Society, 22(2), 225–229. https://doi.org/10.1016/j.ejpn.2018.01.005

Moisello, C., Perfetti, B., Marinelli, L., Sanguineti, V., Bove, M., Feigin, A., Di Rocco, A., Eidelberg, D., & Ghilardi, M. F. (2011). Basal ganglia and kinematics modulation: Insights from Parkinson's and Huntington's diseases. Parkinsonism & Related Disorders, 17(8), 642–644. https://doi.org/10.1016/j.parkreldis.2011.06.021

Nair, A., Razi, A., Gregory, S., Rutledge, R. B., Rees, G., & Tabrizi, S. J. (2022). Imbalanced basal ganglia connectivity is associated with motor deficits and apathy in Huntington's disease. Brain: A Journal of Neurology, 145(3), 991–1000. https://doi.org/10.1093/brain/awab367

Novak, M. J., & Tabrizi, S. J. (2011). Huntington's disease: Clinical presentation and treatment. International Review of Neurobiology, 98, 297–323. https://doi.org/10.1016/B978-0-12-381328-2.00013-4

Paleacu, D. (2007). Tetrabenazine in the treatment of Huntington's disease. Neuropsychiatric Disease and Treatment, 3(5), 545–551.

Penfield, W., & Rasmussen, T. (1950). The cerebral cortex of man; A clinical study of localization of function. New York: The Macmillan Company.

Peterburs, J., & Desmond, J. E. (2016). The role of the human cerebellum in performance monitoring. Current Opinion in Neurobiology, 40, 38–44. https://doi.org/10.1016/j.conb.2016.06.011

Proville, R. D., Spolidoro, M., Guyon, N., Dugué, G. P., Selimi, F., Isope, P., Popa, D., & Léna, C. (2014). Cerebellum involvement in cortical sensorimotor circuits for the control of voluntary movements. Nature Neuroscience, 17(9), 1233–1239. https://doi.org/10.1038/nn.3773

Rosser, A. E., & Bachoud-Lévi, A. C. (2012). Clinical trials of neural transplantation in Huntington's disease. Progress in Brain Research, 200, 345–371. https://doi.org/10.1016/B978-0-444-59575-1.00016-8

Sacks, O. (1987). The disembodied lady. Chapter 3 in: The man who mistook his wife for a hat and other clinical tales. New York: Harper and Row Publishers.

Sandstrom, M. I., Anderson, K. A., Jayaprakash, N., Bhupal, P. K., & Dunbar, G. L. (2018). Plastic adaptation: A neuronal imperative capable of confounding the goals of stem cell replacement therapy for either Huntington's or Parkinson's disease. Chapter 2 (pp. 7-46), In Victor V. Chaban (Ed.), Neuroplasticity: Insights of neural reorganization. IntechOpen, London, UK. ISBN: 978-1-78923-194-6. Chapter doi: 10.5772/intechopen.71790.

Schwartze, M., Keller, P. E., & Kotz, S. A. (2016). Spontaneous, synchronized, and corrective timing behavior in cerebellar lesion patients. Behavioural Brain Research, 312, 285–293. https://doi.org/10.1016/j.bbr.2016.06.040

Smith, K. S., & Graybiel, A. M. (2016). Habit formation. Dialogues in Clinical Neuroscience, 18(1), 33–43. https://doi.org/10.31887/DCNS.2016.18.1/ksmith

Sokolov, A. A., Miall, R. C., & Ivry, R. B. (2017). The cerebellum: Adaptive prediction for movement and cognition. Trends in Cognitive Sciences, 21(5), 313–332. https://doi.org/10.1016/j.tics.2017.02.005

Spencer, R. M., Ivry, R. B., & Zelaznik, H. N. (2005). Role of the cerebellum in movements: Control of timing or movement transitions?. Experimental Brain Research, 161(3), 383–396. https://doi.org/10.1007/s00221-004-2088-6

Stecina, K., Fedirchuk, B., & Hultborn, H. (2013). Information to cerebellum on spinal motor networks mediated by the dorsal spinocerebellar tract. The Journal of Physiology, 591(22), 5433–5443. https://doi.org/10.1113/jphysiol.2012.249110

Strick, P. L., Dum, R. P., & Mushiake, H. (1995). Basal ganglia 'loops' with the cerebral cortex. In: Kimura, M., Graybiel, A. M. (Eds.), Functions of the cortico-basal ganglia loop. Tokyo: Springer. https://doi.org/10.1007/978-4-431-68547-0_7

Surmeier, D. J., Carrillo-Reid, L., & Bargas, J. (2011). Dopaminergic modulation of striatal neurons, circuits, and assemblies. Neuroscience, 198, 3–18. https://doi.org/10.1016/j.neuroscience.2011.08.051

Sveinbjornsdottir, S. (2016). The clinical symptoms of Parkinson's disease. Journal of Neurochemistry, 139(Suppl 1), 318–324. https://doi.org/10.1111/jnc.13691

Taira, M., Mine, S., Georgopoulos, A. P., Murata, A., & Sakata, H. (1990). Parietal cortex neurons of the monkey related to the visual guidance of hand movement. Experimental Brain Research, 83(1), 29–36. https://doi.org/10.1007/BF00232190

Therrien, A. S., & Bastian, A. J. (2019). The cerebellum as a movement sensor. Neuroscience Letters, 688, 37–40. https://doi.org/10.1016/j.neulet.2018.06.055

Thompson, P. D., Berardelli, A., Rothwell, J. C., Day, B. L., Dick, J. P., Benecke, R., & Marsden, C. D. (1988). The coexistence of bradykinesia and chorea in Huntington's disease and its implications for theories of basal ganglia control of movement. Brain: A Journal of Neurology, 111(Pt 2), 223–244. https://doi.org/10.1093/brain/111.2.223

Thompson, A. K., Pomerantz, F. R., & Wolpaw, J. R. (2013). Operant conditioning of a spinal reflex can improve locomotion after spinal cord injury in humans. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33(6), 2365–2375. https://doi.org/10.1523/JNEUROSCI.3968-12.2013

Vachey, G., & Déglon, N. (2018). CRISPR/Cas9-mediated genome editing for Huntington's disease. In: Precious, S., Rosser, A., Dunnett, S. (Eds.), Huntington’s disease. Methods in Molecular Biology, vol 1780. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7825-0_21

Voon, V., Napier, T. C., Frank, M. J., Sgambato-Faure, V., Grace, A. A., Rodriguez-Oroz, M., Obeso, J., Bezard, E., & Fernagut, P. O. (2017). Impulse control disorders and levodopa-induced dyskinesias in Parkinson's disease: An update. The Lancet. Neurology, 16(3), 238–250. https://doi.org/10.1016/S1474-4422(17)30004-2

Walker, F. O. (2007). Huntington's disease. Lancet (London, England), 369(9557), 218–228. https://doi.org/10.1016/S0140-6736(07)60111-1

Wall, N. R., De La Parra, M., Callaway, E. M., & Kreitzer, A. C. (2013). Differential innervation of direct- and indirect-pathway striatal projection neurons. Neuron, 79(2), 347–360. https://doi.org/10.1016/j.neuron.2013.05.014

Yin, H. H., & Knowlton, B. J. (2006). The role of the basal ganglia in habit formation. Nature Reviews Neuroscience, 7(6), 464–476. https://doi.org/10.1038/nrn1919

Zhang, C., Jin, Y., Ziemba, K. S., Fletcher, A. M., Ghosh, B., Truit, E., Yurek, D. M., & Smith, G. M. (2013). Long distance directional growth of dopaminergic axons along pathways of netrin-1 and GDNF. Experimental Neurology, 250, 156–164. https://doi.org/10.1016/j.expneurol.2013.09.022

Zham, P., Kumar, D. K., Dabnichki, P., Poosapadi Arjunan, S., & Raghav, S. (2017). Distinguishing different stages of Parkinson's disease using composite index of speed and pen-pressure of sketching a spiral. Frontiers in Neurology, 8, 435. https://doi.org/10.3389/fneur.2017.00435

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution-NonCommercial-ShareAlike License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/introduction-behavioral-neuroscience/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/introduction-behavioral-neuroscience/pages/1-introduction
Citation information

© Nov 20, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.