Omitir e ir al contenidoIr a la página de accesibilidadMenú de atajos de teclado
Logo de OpenStax

Índice
  1. Prefacio
  2. 1 Muestreo y datos
    1. Introducción
    2. 1.1 Definiciones de estadística, probabilidad y términos clave
    3. 1.2 Datos, muestreo y variación de datos y muestreo
    4. 1.3 Frecuencia, tablas de frecuencia y niveles de medición
    5. 1.4 Diseño experimental y ética
    6. 1.5 Experimento de recopilación de datos
    7. 1.6 Experimento de muestreo
    8. Términos clave
    9. Repaso del capítulo
    10. Práctica
    11. Tarea para la casa
    12. Resúmalo todo: tarea para la casa
    13. Referencias
    14. Soluciones
  3. 2 Estadística descriptiva
    1. Introducción
    2. 2.1 Gráficos de tallo y hoja (gráfico de tallo), gráficos de líneas y gráficos de barras
    3. 2.2 Histogramas, polígonos de frecuencia y gráficos de series temporales
    4. 2.3 Medidas de la ubicación de los datos
    5. 2.4 Diagramas de caja
    6. 2.5 Medidas del centro de los datos
    7. 2.6 Distorsión y media, mediana y moda
    8. 2.7 Medidas de la dispersión de los datos
    9. 2.8 Estadística descriptiva
    10. Términos clave
    11. Repaso del capítulo
    12. Repaso de fórmulas
    13. Práctica
    14. Tarea para la casa
    15. Resúmalo todo: tarea para la casa
    16. Referencias
    17. Soluciones
  4. 3 Temas de probabilidad
    1. Introducción
    2. 3.1 Terminología
    3. 3.2 Eventos mutuamente excluyentes e independientes
    4. 3.3 Dos reglas básicas de la probabilidad
    5. 3.4 Tablas de contingencia
    6. 3.5 Diagramas de árbol y de Venn
    7. 3.6 Temas de probabilidad
    8. Términos clave
    9. Repaso del capítulo
    10. Repaso de fórmulas
    11. Práctica
    12. Uniéndolo todo: Práctica
    13. Tarea para la casa
    14. Resúmalo todo: tarea para la casa
    15. Referencias
    16. Soluciones
  5. 4 Variables aleatorias discretas
    1. Introducción
    2. 4.1 Función de Distribución de Probabilidad (PDF) para una variable aleatoria discreta
    3. 4.2 Media o valor esperado y desviación típica
    4. 4.3 Distribución binomial
    5. 4.4 Distribución geométrica
    6. 4.5 Distribución hipergeométrica
    7. 4.6 Distribución de Poisson
    8. 4.7 Distribución discreta (experimento con cartas)
    9. 4.8 Distribución discreta (experimento de los dados de la suerte)
    10. Términos clave
    11. Repaso del capítulo
    12. Repaso de fórmulas
    13. Práctica
    14. Tarea para la casa
    15. Referencias
    16. Soluciones
  6. 5 Variables aleatorias continuas
    1. Introducción
    2. 5.1 Funciones de probabilidad continuas
    3. 5.2 La distribución uniforme
    4. 5.3 La distribución exponencial
    5. 5.4 Distribución continua
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  7. 6 La distribución normal
    1. Introducción
    2. 6.1 La distribución normal estándar
    3. 6.2 Uso de la distribución normal
    4. 6.3 Distribución normal (tiempos de vuelta)
    5. 6.4 Distribución normal (longitud del meñique)
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  8. 7 El teorema del límite central
    1. Introducción
    2. 7.1 Teorema del límite central de medias muestrales (promedios)
    3. 7.2 El teorema del límite central para las sumas
    4. 7.3 Uso del teorema del límite central
    5. 7.4 Teorema del límite central (monedas en el bolsillo)
    6. 7.5 Teorema del límite central (recetas de galletas)
    7. Términos clave
    8. Repaso del capítulo
    9. Repaso de fórmulas
    10. Práctica
    11. Tarea para la casa
    12. Referencias
    13. Soluciones
  9. 8 Intervalos de confianza
    1. Introducción
    2. 8.1 La media de una población utilizando la distribución normal
    3. 8.2 La media de una población utilizando la distribución t de Student
    4. 8.3 Una proporción de la población
    5. 8.4 Intervalo de confianza (costos de hogares)
    6. 8.5 Intervalo de confianza (lugar de nacimiento)
    7. 8.6 Intervalo de confianza (altura de las mujeres)
    8. Términos clave
    9. Repaso del capítulo
    10. Repaso de fórmulas
    11. Práctica
    12. Tarea para la casa
    13. Referencias
    14. Soluciones
  10. 9 Pruebas de hipótesis con una muestra
    1. Introducción
    2. 9.1 Hipótesis nula y alternativa
    3. 9.2 Resultados y errores de tipo I y II
    4. 9.3 Distribución necesaria para la comprobación de la hipótesis
    5. 9.4 Eventos poco comunes, la muestra, decisión y conclusión
    6. 9.5 Información adicional y ejemplos de pruebas de hipótesis completas
    7. 9.6 Pruebas de hipótesis de una sola media y una sola proporción
    8. Términos clave
    9. Repaso del capítulo
    10. Repaso de fórmulas
    11. Práctica
    12. Tarea para la casa
    13. Referencias
    14. Soluciones
  11. 10 Pruebas de hipótesis con dos muestras
    1. Introducción
    2. 10.1 Medias de dos poblaciones con desviaciones típicas desconocidas
    3. 10.2 Dos medias poblacionales con desviaciones típicas conocidas
    4. 10.3 Comparación de dos proporciones de población independientes
    5. 10.4 Muestras coincidentes o emparejadas
    6. 10.5 Prueba de hipótesis para dos medias y dos proporciones
    7. Términos clave
    8. Repaso del capítulo
    9. Repaso de fórmulas
    10. Práctica
    11. Tarea para la casa
    12. Resúmalo todo: tarea para la casa
    13. Referencias
    14. Soluciones
  12. 11 La distribución chi-cuadrado
    1. Introducción
    2. 11.1 Datos sobre la distribución chi-cuadrado
    3. 11.2 Prueba de bondad de ajuste
    4. 11.3 Prueba de independencia
    5. 11.4 Prueba de homogeneidad
    6. 11.5 Comparación de las pruebas chi-cuadrado
    7. 11.6 Prueba de una sola varianza
    8. 11.7 Laboratorio 1: Bondad de ajuste de chi-cuadrado
    9. 11.8 Laboratorio 2: prueba de independencia de chi-cuadrado
    10. Términos clave
    11. Repaso del capítulo
    12. Repaso de fórmulas
    13. Práctica
    14. Tarea para la casa
    15. Resúmalo todo: tarea para la casa
    16. Referencias
    17. Soluciones
  13. 12 Regresión lineal y correlación
    1. Introducción
    2. 12.1 Ecuaciones lineales
    3. 12.2 Diagramas de dispersión
    4. 12.3 La ecuación de regresión
    5. 12.4 Comprobación de la importancia del coeficiente de correlación
    6. 12.5 Predicción
    7. 12.6 Valores atípicos
    8. 12.7 Regresión (distancia desde la escuela)
    9. 12.8 Regresión (costo de los libros de texto)
    10. 12.9 Regresión (eficiencia del combustible)
    11. Términos clave
    12. Repaso del capítulo
    13. Repaso de fórmulas
    14. Práctica
    15. Tarea para la casa
    16. Resúmalo todo: tarea para la casa
    17. Referencias
    18. Soluciones
  14. 13 Distribución F y análisis de varianza anova de una vía
    1. Introducción
    2. 13.1 ANOVA de una vía
    3. 13.2 La distribución F y el cociente F
    4. 13.3 Datos sobre la distribución F
    5. 13.4 Prueba de dos varianzas
    6. 13.5 Laboratorio: ANOVA de una vía
    7. Términos clave
    8. Repaso del capítulo
    9. Repaso de fórmulas
    10. Práctica
    11. Tarea para la casa
    12. Referencias
    13. Soluciones
  15. A Ejercicios de repaso (caps. 3-13)
  16. B Pruebas prácticas (de la 1 a la 4) y exámenes finales
  17. C Conjuntos de datos
  18. D Proyectos de grupos y asociaciones
  19. E Hojas de soluciones
  20. F Oraciones, símbolos y fórmulas matemáticas
  21. G Notas para las calculadoras TI-83, 83+, 84 y 84+
  22. H Tablas
  23. Índice

X ¯ ~N( μ X , σ n ) X ¯ ~N( μ X , σ n ) La distribución de las medias muestrales se distribuye normalmente con una media igual a la media de la población y una desviación típica dada por la desviación típica de la población dividida por la raíz cuadrada del tamaño de la muestra.

La forma general de un intervalo de confianza para una media poblacional única, desviación típica conocida, distribución normal viene dada por
(límite inferior, límite superior) = (estimación puntual - EBM, estimación puntual + EBM)
= ( x ¯ EBM, x ¯ +EBM) ( x ¯ EBM, x ¯ +EBM)
= ( x ¯ z σ n , x ¯ +z σ n ) ( x ¯ z σ n , x ¯ +z σ n )

EBM = z σ n z σ n = el límite de error para la media, o el margen de error para una única media poblacional; esta fórmula se utiliza cuando se conoce la desviación típica de la población.

CL = nivel de confianza, o la proporción de intervalos de confianza creados que se espera que contengan el verdadero parámetro poblacional

α = 1 – CL = la proporción de intervalos de confianza que no contendrán el parámetro poblacional

z α 2 z α 2 = la puntuación z con la propiedad de que el área a la derecha de la puntuación z es   2   2 esta puntuación z utilizada en el cálculo de “EBM donde α = 1 – CL.

n = z 2 σ 2 EB M 2 z 2 σ 2 EB M 2 = fórmula utilizada para determinar el tamaño de la muestra (n) necesario para alcanzar un margen de error deseado con un nivel de confianza determinado

Forma general de un intervalo de confianza

(valor inferior, valor superior) = (estimación puntual-límite de error, estimación puntual + límite de error)

Para calcular el límite de error cuando se conoce el intervalo de confianza

límite de error = estimación del punto de valor superior O límite de error = valor superiorvalor inferior 2 valor superiorvalor inferior 2

Media de una población, desviación típica conocida, distribución normal

Utilice la distribución normal para las medias, la desviación típica de la población es conocida EBM = z α 2 σ n α 2 σ n

El intervalo de confianza tiene el formato ( x ¯ x ¯ - EBM, x ¯ x ¯ + EBM).

s = la desviación típica de los valores de la muestra.

t=  x ¯ μ s n t=  x ¯ μ s n es la fórmula de la puntuación t que mide la distancia de una medida con respecto a la media de la población en la distribución t de Student

df = n – 1; los grados de libertad para una distribución t de Student donde n representa el tamaño de la muestra

T~tdf es la variable aleatoria, T, tiene una distribución t de Student con df grados de libertad

EBM= t α 2 s n EBM= t α 2 s n = el límite de error para la media de la población cuando la desviación típica de la población es desconocida

t α 2 t α 2 es la puntuación t en la distribución t de Student con un área a la derecha igual a α 2 α 2

La forma general de un intervalo de confianza para una media única, desviación típica de la población desconocida, t de Student viene dada por (límite inferior, límite superior)
= (estimación puntual – EBM, estimación puntual + EBM)
= ( x ¯ ts n , x ¯ ts n ) ( x ¯ ts n , x ¯ ts n )

p′ = x / n donde x representa el número de aciertos y n representa el tamaño de la muestra. La variable p′ es la proporción de la muestra y sirve como estimación puntual de la verdadera proporción de la población.

q′ = 1 – p

p ~N( valor, pq n ) p ~N( valor, pq n ) La variable p′ tiene una distribución binomial que se puede aproximar con la distribución normal que se muestra aquí.

EBP = el límite de error para una proporción = z α 2 p q n z α 2 p q n

Intervalo de confianza para una proporción:

(límite inferior, límite superior) =( p EBP, p +EBP)=( p z p q n ,  p +z p q n ) =( p EBP, p +EBP)=( p z p q n ,  p +z p q n )

n=  z α 2 2 p q EB P 2 n=  z α 2 2 p q EB P 2 proporciona el número de participantes necesarios para estimar la proporción de la población con confianza 1 - α y margen de error EBP.

Utilice la distribución normal para una proporción de población única p = x n p = x n

EBP=( z α 2 ) pq n  p+q=1 EBP=( z α 2 ) pq n  p+q=1

El intervalo de confianza tiene el formato (p′EBP, p′ + EBP).

x ¯ x ¯ es una estimación puntual de μ

p′ es una estimación puntual de ρ

s es una estimación puntual de σ

Solicitar una copia impresa

As an Amazon Associate we earn from qualifying purchases.

Cita/Atribución

Este libro no puede ser utilizado en la formación de grandes modelos de lenguaje ni incorporado de otra manera en grandes modelos de lenguaje u ofertas de IA generativa sin el permiso de OpenStax.

¿Desea citar, compartir o modificar este libro? Este libro utiliza la Creative Commons Attribution License y debe atribuir a OpenStax.

Información de atribución
  • Si redistribuye todo o parte de este libro en formato impreso, debe incluir en cada página física la siguiente atribución:
    Acceso gratis en https://openstax.org/books/introducci%C3%B3n-estad%C3%ADstica/pages/1-introduccion
  • Si redistribuye todo o parte de este libro en formato digital, debe incluir en cada vista de la página digital la siguiente atribución:
    Acceso gratuito en https://openstax.org/books/introducci%C3%B3n-estad%C3%ADstica/pages/1-introduccion
Información sobre citas

© 28 ene. 2022 OpenStax. El contenido de los libros de texto que produce OpenStax tiene una licencia de Creative Commons Attribution License . El nombre de OpenStax, el logotipo de OpenStax, las portadas de libros de OpenStax, el nombre de OpenStax CNX y el logotipo de OpenStax CNX no están sujetos a la licencia de Creative Commons y no se pueden reproducir sin el previo y expreso consentimiento por escrito de Rice University.