Omitir e ir al contenidoIr a la página de accesibilidadMenú de atajos de teclado
Logo de OpenStax

Índice
  1. Prefacio
  2. 1 Muestreo y datos
    1. Introducción
    2. 1.1 Definiciones de estadística, probabilidad y términos clave
    3. 1.2 Datos, muestreo y variación de datos y muestreo
    4. 1.3 Niveles de medición
    5. 1.4 Diseño experimental y ética
    6. Términos clave
    7. Repaso del capítulo
    8. Tarea para la casa
    9. Referencias
    10. Soluciones
  3. 2 Estadística descriptiva
    1. Introducción
    2. 2.1 Datos mostrados
    3. 2.2 Medidas de la ubicación de los datos
    4. 2.3 Medidas del centro de los datos
    5. 2.4 Notación sigma y cálculo de la media aritmética
    6. 2.5 Media geométrica
    7. 2.6 Distorsión y media, mediana y moda
    8. 2.7 Medidas de la dispersión de los datos
    9. Términos clave
    10. Repaso del capítulo
    11. Repaso de fórmulas
    12. Práctica
    13. Tarea para la casa
    14. Resúmalo todo: tarea para la casa
    15. Referencias
    16. Soluciones
  4. 3 Temas de probabilidad
    1. Introducción
    2. 3.1 Terminología
    3. 3.2 Eventos mutuamente excluyentes e independientes
    4. 3.3 Dos reglas básicas de la probabilidad
    5. 3.4 Tablas de contingencia y árboles de probabilidad
    6. 3.5 Diagramas de Venn
    7. Términos clave
    8. Repaso del capítulo
    9. Repaso de fórmulas
    10. Práctica
    11. Uniéndolo todo: Práctica
    12. Tarea para la casa
    13. Resúmalo todo: tarea para la casa
    14. Referencias
    15. Soluciones
  5. 4 Variables aleatorias discretas
    1. Introducción
    2. 4.1 Distribución hipergeométrica
    3. 4.2 Distribución binomial
    4. 4.3 Distribución geométrica
    5. 4.4 Distribución de Poisson
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  6. 5 Variables aleatorias continuas
    1. Introducción
    2. 5.1 Propiedades de las funciones de densidad de probabilidad continuas
    3. 5.2 La distribución uniforme
    4. 5.3 La distribución exponencial
    5. Términos clave
    6. Repaso del capítulo
    7. Repaso de fórmulas
    8. Práctica
    9. Tarea para la casa
    10. Referencias
    11. Soluciones
  7. 6 La distribución normal
    1. Introducción
    2. 6.1 La distribución normal estándar
    3. 6.2 Uso de la distribución normal
    4. 6.3 Estimación de la binomial con la distribución normal
    5. Términos clave
    6. Repaso del capítulo
    7. Repaso de fórmulas
    8. Práctica
    9. Tarea para la casa
    10. Referencias
    11. Soluciones
  8. 7 El teorema del límite central
    1. Introducción
    2. 7.1 Teorema del límite central de las medias muestrales
    3. 7.2 Uso del teorema del límite central
    4. 7.3 Teorema del límite central de las proporciones
    5. 7.4 Factor de corrección de población finita
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  9. 8 Intervalos de confianza
    1. Introducción
    2. 8.1 Un intervalo de confianza para una desviación típica de la población, con un tamaño de muestra conocido o grande
    3. 8.2 Un intervalo de confianza para una desviación típica de población desconocida, caso de una muestra pequeña
    4. 8.3 Un intervalo de confianza para una proporción de población
    5. 8.4 Cálculo del tamaño de la muestra n: variables aleatorias continuas y binarias
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  10. 9 Pruebas de hipótesis con una muestra
    1. Introducción
    2. 9.1 Hipótesis nula y alternativa
    3. 9.2 Resultados y errores de tipo I y II
    4. 9.3 Distribución necesaria para la comprobación de la hipótesis
    5. 9.4 Ejemplos de pruebas de hipótesis completas
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  11. 10 Pruebas de hipótesis con dos muestras
    1. Introducción
    2. 10.1 Comparación de las medias de dos poblaciones independientes
    3. 10.2 Criterios de Cohen para efectos de tamaño pequeño, mediano y grande
    4. 10.3 Prueba de diferencias de medias: suponer varianzas de población iguales
    5. 10.4 Comparación de dos proporciones de población independientes
    6. 10.5 Dos medias poblacionales con desviaciones típicas conocidas
    7. 10.6 Muestras coincidentes o emparejadas
    8. Términos clave
    9. Repaso del capítulo
    10. Repaso de fórmulas
    11. Práctica
    12. Tarea para la casa
    13. Resúmalo todo: tarea para la casa
    14. Referencias
    15. Soluciones
  12. 11 La distribución chi-cuadrado
    1. Introducción
    2. 11.1 Datos sobre la distribución chi-cuadrado
    3. 11.2 Prueba de una sola varianza
    4. 11.3 Prueba de bondad de ajuste
    5. 11.4 Prueba de independencia
    6. 11.5 Prueba de homogeneidad
    7. 11.6 Comparación de las pruebas chi-cuadrado
    8. Términos clave
    9. Repaso del capítulo
    10. Repaso de fórmulas
    11. Práctica
    12. Tarea para la casa
    13. Resúmalo todo: tarea para la casa
    14. Referencias
    15. Soluciones
  13. 12 La distribución F y el anova de una vía
    1. Introducción
    2. 12.1 Prueba de dos varianzas
    3. 12.2 ANOVA de una vía
    4. 12.3 La distribución F y el cociente F
    5. 12.4 Datos sobre la distribución F
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  14. 13 Regresión lineal y correlación
    1. Introducción
    2. 13.1 El coeficiente de correlación r
    3. 13.2 Comprobación de la importancia del coeficiente de correlación
    4. 13.3 Ecuaciones lineales
    5. 13.4 La ecuación de regresión
    6. 13.5 Interpretación de los coeficientes de regresión: elasticidad y transformación logarítmica
    7. 13.6 Predicción con una ecuación de regresión
    8. 13.7 Cómo utilizar Microsoft Excel® para el análisis de regresión
    9. Términos clave
    10. Repaso del capítulo
    11. Práctica
    12. Soluciones
  15. A Cuadros estadísticos
  16. B Oraciones, símbolos y fórmulas matemáticas
  17. Índice
1.

Distribución uniforme

3.

Distribución normal

5.

P(6 < x < 7)

7.

uno

9.

cero

11.

uno

13.

0,625

15.

La probabilidad es igual al área desde x = 3 2 3 2 hasta x = 4 por encima del eje x y hasta f(x) = 1 3 1 3 .

17.

Significa que el valor de x tiene la misma probabilidad de ser cualquier número entre 1,5 y 4,5.

19.

1,5 ≤ x ≤ 4,5

21.

0,3333

23.

cero

24.

0,6

26.

b es 12, y representa el valor más alto de x.

28.

seis

30.
Este gráfico muestra una distribución uniforme. El eje horizontal va de 0 a 12. La distribución se modela mediante un rectángulo que se extiende desde x = 0 hasta x = 12. En el interior del rectángulo está sombreada una región desde x = 9 hasta x = 12.
Figura 5.38
33.

X = La edad (en años) de los automóviles en el estacionamiento del personal

35.

de 0,5 a 9,5

37.

f(x) = 1 9 1 9 donde x está entre 0,5 y 9,5, ambos inclusive.

39.

μ = 5

41.
  1. Compruebe la solución del estudiante.
  2. 3,5 7 3,5 7
43.
  1. Compruebe la solución del estudiante.
  2. k = 7,25
  3. 7,25
45.

No, los resultados no son igualmente probables. En esta distribución más personas requieren poco tiempo y menos personas requieren mucho tiempo, por lo que es más probable que alguien requiera menos tiempo.

47.

cinco

49.

f(x) = 0,2e–0,2x

51.

0,5350

53.

6,02

55.

f(x) = 0,75e–0,75x

57.
Este gráfico muestra una distribución exponencial. El gráfico tiene una pendiente hacia abajo. Comienza en el punto (0, 0,75) del eje y y se acerca al eje x en el borde derecho del gráfico. El parámetro de decaimiento, m, es igual a 0,75.
Figura 5.39
59.

0,4756

61.

La media es mayor. La media es 1 m = 1 0,75 1,33 1 m = 1 0,75 1,33 , que es superior a 0,9242.

63.

continuos

65.

m = 0,000121

67.
  1. Compruebe la solución del estudiante.
  2. P(x < 5.730) = 0,5001
69.
  1. Compruebe la solución del estudiante.
  2. k = 2.947,73
71.

La edad es una medida, independientemente de la exactitud utilizada.

73.
  1. Compruebe la solución del estudiante.
  2. e(x)= 1 8 e(x)= 1 8 donde 1x9 1x9
  3. cinco
  4. 2,3
  5. 15 32 15 32
  6. 333 800 333 800
  7. 2 3 2 3
75.
  1. La X representa el tiempo que un viajero debe esperar a que llegue un tren en la línea roja.
  2. Grafique la distribución de probabilidad.
  3. e(x)= 1 8 e(x)= 1 8 donde 0 ≤ x ≤ 8
  4. cuatro
  5. 2,31
  6. 1 8 1 8
  7. 1 8 1 8
77.

d

78.

b

80.
  1. La función de densidad de probabilidad de X es 1 2516 = 1 9 1 2516 = 1 9 .
    P(X > 19) = (25 – 19) ( 1 9 ) ( 1 9 ) = 6 9 6 9 = 2 3 2 3 .
    Figura 5.40
  2. P(19 < X < 22) = (22 – 19) ( 1 9 ) ( 1 9 ) = 3 9 3 9 = 1 3 1 3 .
    Figura 5.41
  3. Esta es una pregunta de probabilidad condicional. P(x > 21 || x > 18). Puede responderla de dos maneras:
    • Dibuje el gráfico donde a es ahora 18 y b sigue siendo 25. La altura es 1 (2518) 1 (2518) = 1 7 1 7
      Entonces, P(x > 21 || x > 18) = (25 - 21) ( 1 7 ) ( 1 7 ) = 4/7.
    • Utilice la fórmula: P(x > 21 || x > 18) = P(x>21x>18) P(x>18) P(x>21x>18) P(x>18)
      = P(x>21) P(x>18) P(x>21) P(x>18) = (2521) (2518) (2521) (2518) = 4 7 4 7 .
82.
  1. P(X > 650) = 700650 700300 = 50 400 = 1 8 700650 700300 = 50 400 = 1 8 = 0,125.
  2. P(400 < X < 650) = 650400 700300 = 250 400 650400 700300 = 250 400 = 0,625
84.
  1. X = la vida útil de una determinada batería de automóvil medida en meses.
  2. X es continua.
  3. 40 meses
  4. 360 meses
  5. 0,4066
  6. 14,27
86.
  1. X = el tiempo (en años) que tarda una persona en jubilarse después de cumplir 60 años
  2. X es continua.
  3. cinco
  4. cinco
  5. Compruebe la solución del estudiante.
  6. 0,1353
  7. antes
  8. 18,3
88.

a

90.

c

92.

Supongamos que X = el número de sin batazos imparables a lo largo de una temporada. Como la duración del tiempo entre los sin batazos imparables es exponencial, el número de sin batazos imparables por temporada es Poisson con media de λ = 3.
Por lo tanto, (X = 0) = 3 0 e 3 0! 3 0 e 3 0! = e–3 ≈ 0,0498

NOTA

Podría dejar que T = duración del tiempo entre los sin batazos imparables. Como el tiempo es exponencial y hay 3 sin batazos imparables por temporada, entonces el tiempo entre sin batazos imparables es 1 3 1 3 por temporada. Para la exponencial, µ = 1 3 1 3 .
Por lo tanto, m = 1 μ 1 μ = 3 y TExp(3).

  1. La probabilidad deseada es P(T > 1) = 1 – P(T < 1) = 1 – (1 – e–3) = e–3 ≈ 0,0498.
  2. Supongamos que T = duración del tiempo entre los sin batazos imparables. Hallamos P(T > 2|T > 1), y por la propiedad de falta de memoria esto es simplemente P(T > 1), que hallamos que es 0,0498 en la parte a.
  3. Supongamos que X = el número de sin batazos imparables es una temporada. Supongamos que X es Poisson con media de λ = 3. Entonces P(X > 3) = 1 – P(X ≤ 3) = 0,3528.
94.
  1. 100 9 100 9 = 11,11
  2. P(X > 10) = 1 – P(X ≤ 10) = 1 – Poissoncdf(11,11; 10) ≈ 0,5532.
  3. El número de personas con sangre de tipo B encontradas sigue más o menos la distribución de Poisson, por lo que el número de personas X que llegan entre las sucesivas llegadas de tipo B es aproximadamente exponencial con media μ = 9 y m = 1 9 1 9 . La función de distribución acumulativa de X es P( X<x )=1 e x 9 P( X<x )=1 e x 9 . Así que, P(X > 20) = 1 – P(X ≤ 20) = 1( 1 e 20 9 )0,1084. 1( 1 e 20 9 )0,1084.

Nota

También podríamos deducir que cada persona que llega tiene una probabilidad de 8/9 de no tener sangre de tipo B. Así que la probabilidad de que ninguna de las primeras 20 personas que lleguen tenga sangre tipo B es ( 8 9 ) 20 0,0948 ( 8 9 ) 20 0,0948 . (la distribución geométrica es más apropiada que la exponencial porque el número de personas entre el tipo B es discreto en vez de continuo).

96.

Supongamos que T = la duración (en minutos) entre visitas sucesivas. Dado que los pacientes llegan a un ritmo de un paciente cada siete minutos, μ = 7 y la constante de decaimiento es m = 1 7 1 7 . La cdf es P(T < t) = 1 e t 7 1 e t 7

  1. P(T < 2) = 1 – 1 e 2 7 1 e 2 7 ≈ 0,2485.
  2. P(T > 15) = 1P( T<15 )=1( 1 e 15 7 ) e 15 7 0,1173 1P( T<15 )=1( 1 e 15 7 ) e 15 7 0,1173 .
  3. P(T > 15|T > 10) = P(T > 5) = 1( 1 e 5 7 )= e 5 7 0,4895 1( 1 e 5 7 )= e 5 7 0,4895 .
  4. Supongamos que X = número de pacientes que llegan durante un periodo de media hora. Entonces X tiene la distribución de Poisson con una media de 30 7 30 7 , X ∼ Poisson ( 30 7 ) ( 30 7 ) . Calcule P(X > 8) = 1 – P(X ≤ 8) ≈ 0,0311.
Solicitar una copia impresa

As an Amazon Associate we earn from qualifying purchases.

Cita/Atribución

Este libro no puede ser utilizado en la formación de grandes modelos de lenguaje ni incorporado de otra manera en grandes modelos de lenguaje u ofertas de IA generativa sin el permiso de OpenStax.

¿Desea citar, compartir o modificar este libro? Este libro utiliza la Creative Commons Attribution License y debe atribuir a OpenStax.

Información de atribución
  • Si redistribuye todo o parte de este libro en formato impreso, debe incluir en cada página física la siguiente atribución:
    Acceso gratis en https://openstax.org/books/introducci%C3%B3n-estad%C3%ADstica-empresarial/pages/1-introduccion
  • Si redistribuye todo o parte de este libro en formato digital, debe incluir en cada vista de la página digital la siguiente atribución:
    Acceso gratuito en https://openstax.org/books/introducci%C3%B3n-estad%C3%ADstica-empresarial/pages/1-introduccion
Información sobre citas

© 28 ene. 2022 OpenStax. El contenido de los libros de texto que produce OpenStax tiene una licencia de Creative Commons Attribution License . El nombre de OpenStax, el logotipo de OpenStax, las portadas de libros de OpenStax, el nombre de OpenStax CNX y el logotipo de OpenStax CNX no están sujetos a la licencia de Creative Commons y no se pueden reproducir sin el previo y expreso consentimiento por escrito de Rice University.