Omitir e ir al contenidoIr a la página de accesibilidadMenú de atajos de teclado
Logo de OpenStax

Menú
Índice
  1. Prefacio
  2. 1 Muestreo y datos
    1. Introducción
    2. 1.1 Definiciones de estadística, probabilidad y términos clave
    3. 1.2 Datos, muestreo y variación de datos y muestreo
    4. 1.3 Niveles de medición
    5. 1.4 Diseño experimental y ética
    6. Términos clave
    7. Repaso del capítulo
    8. Tarea para la casa
    9. Referencias
    10. Soluciones
  3. 2 Estadística descriptiva
    1. Introducción
    2. 2.1 Datos mostrados
    3. 2.2 Medidas de la ubicación de los datos
    4. 2.3 Medidas del centro de los datos
    5. 2.4 Notación sigma y cálculo de la media aritmética
    6. 2.5 Media geométrica
    7. 2.6 Distorsión y media, mediana y moda
    8. 2.7 Medidas de la dispersión de los datos
    9. Términos clave
    10. Repaso del capítulo
    11. Repaso de fórmulas
    12. Práctica
    13. Tarea para la casa
    14. Resúmalo todo: tarea para la casa
    15. Referencias
    16. Soluciones
  4. 3 Temas de probabilidad
    1. Introducción
    2. 3.1 Terminología
    3. 3.2 Eventos mutuamente excluyentes e independientes
    4. 3.3 Dos reglas básicas de la probabilidad
    5. 3.4 Tablas de contingencia y árboles de probabilidad
    6. 3.5 Diagramas de Venn
    7. Términos clave
    8. Repaso del capítulo
    9. Repaso de fórmulas
    10. Práctica
    11. Uniéndolo todo: Práctica
    12. Tarea para la casa
    13. Resúmalo todo: tarea para la casa
    14. Referencias
    15. Soluciones
  5. 4 Variables aleatorias discretas
    1. Introducción
    2. 4.1 Distribución hipergeométrica
    3. 4.2 Distribución binomial
    4. 4.3 Distribución geométrica
    5. 4.4 Distribución de Poisson
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  6. 5 Variables aleatorias continuas
    1. Introducción
    2. 5.1 Propiedades de las funciones de densidad de probabilidad continuas
    3. 5.2 La distribución uniforme
    4. 5.3 La distribución exponencial
    5. Términos clave
    6. Repaso del capítulo
    7. Repaso de fórmulas
    8. Práctica
    9. Tarea para la casa
    10. Referencias
    11. Soluciones
  7. 6 La distribución normal
    1. Introducción
    2. 6.1 La distribución normal estándar
    3. 6.2 Uso de la distribución normal
    4. 6.3 Estimación de la binomial con la distribución normal
    5. Términos clave
    6. Repaso del capítulo
    7. Repaso de fórmulas
    8. Práctica
    9. Tarea para la casa
    10. Referencias
    11. Soluciones
  8. 7 El teorema del límite central
    1. Introducción
    2. 7.1 Teorema del límite central de las medias muestrales
    3. 7.2 Uso del teorema del límite central
    4. 7.3 Teorema del límite central de las proporciones
    5. 7.4 Factor de corrección de población finita
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  9. 8 Intervalos de confianza
    1. Introducción
    2. 8.1 Un intervalo de confianza para una desviación típica de la población, con un tamaño de muestra conocido o grande
    3. 8.2 Un intervalo de confianza para una desviación típica de población desconocida, caso de una muestra pequeña
    4. 8.3 Un intervalo de confianza para una proporción de población
    5. 8.4 Cálculo del tamaño de la muestra n: variables aleatorias continuas y binarias
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  10. 9 Pruebas de hipótesis con una muestra
    1. Introducción
    2. 9.1 Hipótesis nula y alternativa
    3. 9.2 Resultados y errores de tipo I y II
    4. 9.3 Distribución necesaria para la comprobación de la hipótesis
    5. 9.4 Ejemplos de pruebas de hipótesis completas
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  11. 10 Pruebas de hipótesis con dos muestras
    1. Introducción
    2. 10.1 Comparación de las medias de dos poblaciones independientes
    3. 10.2 Criterios de Cohen para efectos de tamaño pequeño, mediano y grande
    4. 10.3 Prueba de diferencias de medias: suponer varianzas de población iguales
    5. 10.4 Comparación de dos proporciones de población independientes
    6. 10.5 Dos medias poblacionales con desviaciones típicas conocidas
    7. 10.6 Muestras coincidentes o emparejadas
    8. Términos clave
    9. Repaso del capítulo
    10. Repaso de fórmulas
    11. Práctica
    12. Tarea para la casa
    13. Resúmalo todo: tarea para la casa
    14. Referencias
    15. Soluciones
  12. 11 La distribución chi-cuadrado
    1. Introducción
    2. 11.1 Datos sobre la distribución chi-cuadrado
    3. 11.2 Prueba de una sola varianza
    4. 11.3 Prueba de bondad de ajuste
    5. 11.4 Prueba de independencia
    6. 11.5 Prueba de homogeneidad
    7. 11.6 Comparación de las pruebas chi-cuadrado
    8. Términos clave
    9. Repaso del capítulo
    10. Repaso de fórmulas
    11. Práctica
    12. Tarea para la casa
    13. Resúmalo todo: tarea para la casa
    14. Referencias
    15. Soluciones
  13. 12 La distribución F y el anova de una vía
    1. Introducción
    2. 12.1 Prueba de dos varianzas
    3. 12.2 ANOVA de una vía
    4. 12.3 La distribución F y el cociente F
    5. 12.4 Datos sobre la distribución F
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  14. 13 Regresión lineal y correlación
    1. Introducción
    2. 13.1 El coeficiente de correlación r
    3. 13.2 Comprobación de la importancia del coeficiente de correlación
    4. 13.3 Ecuaciones lineales
    5. 13.4 La ecuación de regresión
    6. 13.5 Interpretación de los coeficientes de regresión: elasticidad y transformación logarítmica
    7. 13.6 Predicción con una ecuación de regresión
    8. 13.7 Cómo utilizar Microsoft Excel® para el análisis de regresión
    9. Términos clave
    10. Repaso del capítulo
    11. Práctica
    12. Soluciones
  15. A Cuadros estadísticos
  16. B Oraciones, símbolos y fórmulas matemáticas
  17. Índice

2.1 Datos mostrados

Un gráfico de tallo y hoja es una forma de representar los datos y observar la distribución. En un gráfico de tallo y hoja todos los valores de los datos de una clase son visibles. La ventaja de un gráfico de tallo y hoja es que se enumeran todos los valores, a diferencia de un histograma, que da clases de valores de datos. Un gráfico de líneas se suele usar para representar un conjunto de valores de datos en los que una cantidad varía con el tiempo. Estos gráficos son útiles para hallar tendencias. Es decir, hallar un patrón general en conjuntos de datos que incluyan temperatura, ventas, empleo, ganancias o costos de la compañía durante un periodo. Un gráfico de barras es un gráfico que utiliza barras horizontales o verticales para mostrar comparaciones entre categorías. Un eje del gráfico muestra las categorías específicas que se comparan, y el otro eje representa un valor discreto. Algunos gráficos de barras presentan las barras agrupadas en grupos de más de uno (gráficos de barras agrupados), y otros muestran las barras divididas en subpartes para mostrar el efecto acumulativo (gráficos de barras apilados). Los gráficos de barras son especialmente útiles cuando se utilizan datos categóricos.

Un histograma es una versión gráfica de una distribución de frecuencias. El gráfico consiste en barras de igual ancho dibujadas de forma adyacente. La escala horizontal representa clases de valores de datos cuantitativos y la escala vertical representa frecuencias. Las alturas de las barras corresponden a valores de frecuencia. Los histogramas se suelen utilizar para conjuntos de datos cuantitativos, continuos y de gran tamaño. Un polígono de frecuencias también se puede usar cuando se grafican grandes conjuntos de datos con puntos de datos que se repiten. Los datos suelen ir en el eje y, y la frecuencia se representa en el eje x. Los gráficos de series temporales pueden ser útiles cuando se observan grandes cantidades de datos de una variable durante un periodo.

2.2 Medidas de la ubicación de los datos

Los valores que dividen un conjunto de datos ordenados en 100 partes iguales se llaman percentiles. Los percentiles se utilizan para comparar e interpretar datos. Por ejemplo, una observación en el percentil 50 sería mayor que el 50 % de las demás observaciones del conjunto. Los cuartiles dividen los datos en cuartos. El primer cuartil (Q1) es el percentil 25, el segundo cuartil (Q2 o mediana) es el percentil 50 y el tercer cuartil (Q3) es el percentil 75. El rango intercuartil, o IQR, es el rango del 50 % del centro de los valores de los datos. El IQR se encuentra restando Q1 de Q3, y puede ayudar a determinar los valores atípicos utilizando las dos expresiones siguientes.

  • Q3 + IQR(1,5)
  • Q1IQR(1,5)

2.3 Medidas del centro de los datos

La media y la mediana se pueden calcular para ayudar a hallar el “centro” de un conjunto de datos. La media es la mejor estimación para el conjunto de datos reales, pero la mediana es la mejor medida cuando un conjunto de datos contiene varios valores atípicos o extremos. La moda le indicará el dato (o los datos) que aparecen con más frecuencia en su conjunto de datos. La media, la mediana y la moda son extremadamente útiles cuando se necesita analizar datos, pero si el conjunto de datos está formado por rangos que carecen de valores específicos, la media puede parecer imposible de calcular. Sin embargo, la media se puede aproximar si se suma el límite inferior con el superior y se divide entre dos para hallar el punto medio de cada intervalo. Multiplique cada punto medio por el número de valores hallados en el rango correspondiente. Divida la suma de estos valores entre el número total de valores de datos del conjunto.

2.6 Distorsión y media, mediana y moda

Observar la distribución de los datos puede revelar mucho sobre la relación entre la media, la mediana y la moda. Hay tres tipos de distribuciones. Una distribución distorsionada a la izquierda (o negativa) tiene una forma como la Figura 2.12. Una distribución distorsionada a la derecha (o positiva) tiene una forma como la Figura 2.13. Una distribución simétrica se parece a la Figura 2.11.

2.7 Medidas de la dispersión de los datos

La desviación típica puede ayudarlo a calcular la dispersión de los datos. Existen diferentes ecuaciones para calcular la desviación típica de una muestra o de una población.

  • La desviación típica nos permite comparar numéricamente datos individuales o clases con la media del conjunto de datos.
  • s = (x x ) 2 n1 (x x ) 2 n1 o s = e (x x ) 2 n1 e (x x ) 2 n1 es la fórmula para calcular la desviación típica de una muestra. Para calcular la desviación típica de una población usaríamos la media de la población, μ, y la fórmula σ = (xμ) 2 N (xμ) 2 N o σ = e (xμ) 2 N e (xμ) 2 N .
Solicitar una copia impresa

As an Amazon Associate we earn from qualifying purchases.

Cita/Atribución

¿Desea citar, compartir o modificar este libro? Este libro utiliza la Creative Commons Attribution License y debe atribuir a OpenStax.

Información de atribución
  • Si redistribuye todo o parte de este libro en formato impreso, debe incluir en cada página física la siguiente atribución:
    Acceso gratis en https://openstax.org/books/introducci%C3%B3n-estad%C3%ADstica-empresarial/pages/1-introduccion
  • Si redistribuye todo o parte de este libro en formato digital, debe incluir en cada vista de la página digital la siguiente atribución:
    Acceso gratuito en https://openstax.org/books/introducci%C3%B3n-estad%C3%ADstica-empresarial/pages/1-introduccion
Información sobre citas

© 28 ene. 2022 OpenStax. El contenido de los libros de texto que produce OpenStax tiene una licencia de Creative Commons Attribution License . El nombre de OpenStax, el logotipo de OpenStax, las portadas de libros de OpenStax, el nombre de OpenStax CNX y el logotipo de OpenStax CNX no están sujetos a la licencia de Creative Commons y no se pueden reproducir sin el previo y expreso consentimiento por escrito de Rice University.